卷积神经网络
visvim.zuo
这个作者很懒,什么都没留下…
展开
-
AlexNet卷积神经网络实现
AlexNet特点使用ReLU作为激活函数,解决了sigmoid在网络较深时的梯度弥散问题使用Dropout随机忽略一部分神经元,以避免过拟合使用重叠的maxpool,避免argpool的模糊化效果提出LRN层,对局部神经元的活动创建竞争机制,使其中响应比较大的值变得相对更大,并抑制其它反馈较小的神经元,增强模型的泛化能力GTX 580*2 3GB数据增强:随机从256256的原始...原创 2019-04-11 17:47:18 · 403 阅读 · 0 评论 -
VGG-16卷积神经网络实现
VGG简介ILSVRC2014比赛分类项目第2名(第1名是GoogLeNet)和定位项目第1名。拓展性很强:迁移到其他图片数据上的泛化性非常好。结构简洁:整个网络都使用了同样大小的卷积核尺寸(3X3)和最大池化尺寸(2X2),到目前为止VGGNet依然经常被用来提取图像特征。网络结构图VGGNet训练时使用了4块Geforce GTX Titan GPU并行计算,速度比单块GPU快...原创 2019-04-13 16:40:41 · 2257 阅读 · 0 评论 -
用VGG_16网络模型训练并测试自己的数据库(超级详细的教程)
网络结构:VGG-16数据库:cats_vs_dogs硬件:Nvida Quadro p2000 5GB深度学习框架:Tensorflow文章目录step1: Get Filestep2: Transform To TFRecordstep3: Read TFRecordstpe4: VGG_16 Modelstep5: Trainstep1: Get File找到已经下载到电脑...原创 2019-04-14 22:18:00 · 8820 阅读 · 18 评论