- 博客(4)
- 收藏
- 关注
原创 机器学习模型融合
模型融合是比赛后期一个重要的环节,大体来说有如下的类型方式。简单加权融合:回归(分类概率):算术平均融合(Arithmetic mean),几何平均融合(Geometric mean);分类:投票(Voting);综合:排序融合(Rank averaging),log融合stacking/blending:构建多层模型,并利用预测结果再拟合预测。boosting/b...
2020-04-04 20:52:22 515
原创 机器学习建模调参
线性回归模型线性回归对于特征的要求;处理长尾分布;理解线性回归模型;2.模型性能验证:评价函数与目标函数;交叉验证方法;留一验证方法;针对时间序列问题的验证;绘制学习率曲线;绘制验证曲线;3.嵌入式特征选择:Lasso回归;Ridge回归;决策树;4.模型对比:常用线性模型;常用非线性模型;5.模型调参:贪心调参方法;网格调参方法;贝...
2020-04-01 19:47:29 224
原创 常见的特征工程
常见的特征工程包括:异常处理:通过箱线图(或 3-Sigma)分析删除异常值;BOX-COX 转换(处理有偏分布);长尾截断;特征归一化/标准化:标准化(转换为标准正态分布);归一化(抓换到 [0,1] 区间);针对幂律分布,可以采用公式:log(1+x1+median)\log \left(\frac{1+x}{1+m e d i a n}\right)log...
2020-03-28 16:19:47 343
原创 机器学习特征工程
特征工程特征工程是比赛中最至关重要的的一块,特别的传统的比赛,大家的模型可能都差不多,调参带来的效果增幅是非常有限的,但特征工程的好坏往往会决定了最终的排名和成绩。特征工程的主要目的还是在于将数据转换为能更好地表示潜在问题的特征,从而提高机器学习的性能。比如,异常值处理是为了去除噪声,填补缺失值可以加入先验知识等。特征构造也属于特征工程的一部分,其目的是为了增强数据的表达。有些比赛的特征是...
2020-03-24 17:17:48 392
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人