对sin(x)^n dx or cos(x)^n dx的计算验证过程以及结论

一、基本形式

I n = ∫ 0 π 2 sin ⁡ n ( x )   d x I_n=\int_{0}^{\frac{\pi}{2}}{\sin^n(x)}\, dx In=02πsinn(x)dx
or
I n = ∫ 0 π 2 cos ⁡ n ( x )   d x I_n=\int_{0}^{\frac{\pi}{2}}{\cos^n(x)}\, dx In=02πcosn(x)dx

二、结论

∫ 0 π 2 sin ⁡ n ( x )   d x = { ( n − 1 ) ! ! n ! ! ⋅ π 2 ( n 为 偶 数 ) ( n − 1 ) ! ! n ! ! ⋅ 1 ( n 为 奇 数 ) \int_{0}^{\frac{\pi}{2}}{\sin^n(x)}\, dx = \left\{\begin{matrix}\frac{(n-1)!!}{n!!}\cdot \frac{\pi}{2}\quad (n为偶数)\\\\\frac{(n-1)!!}{n!!} \cdot 1 \quad (n为奇数)\end{matrix}\right. 02πsinn(x)dx=n!!(n1)!!2π(n)n!!(n1)!!1(n)

or
∫ 0 π 2 cos ⁡ n ( x )   d x = { ( n − 1 ) ! ! n ! ! ⋅ π 2 ( n 为 偶 数 ) ( n − 1 ) ! ! n ! ! ⋅ 1 ( n 为 奇 数 ) \int_{0}^{\frac{\pi}{2}}{\cos^n(x)}\, dx = \left\{\begin{matrix}\frac{(n-1)!!}{n!!}\cdot \frac{\pi}{2}\quad (n为偶数)\\\\\frac{(n-1)!!}{n!!} \cdot 1 \quad (n为奇数)\end{matrix}\right. 02πcosn(x)dx=n!!(n1)!!2π(n)n!!(n1)!!1(n)

三、证明过程

使用分部积分方法对 I n I_n In进行一次降幂(先对 sin ⁡ ( x ) \sin(x) sin(x)进行分析)

I n = ∫ 0 π 2 sin ⁡ n ( x )   d x I_n=\int_{0}^{\frac{\pi}{2}}{\sin^n(x)}\, dx In=02πsinn(x)dx
I n = − ∫ 0 π 2 sin ⁡ n − 1 ( x )   d cos ⁡ ( x ) I_n=-\int_{0}^{\frac{\pi}{2}}{\sin^{n-1}(x)}\, d{\cos(x)} In=02πsinn1(x)dcos(x)

I n = − sin ⁡ n − 1 ( x ) ⋅ cos ⁡ ( x ) π 2 0 ∣ + ∫ 0 π 2 cos ⁡ ( x ) d sin ⁡ n − 1 ( x ) I_n=-\sin^{n-1}(x)\cdot\cos(x)\left.\begin{matrix}{\frac{\pi}{2}}\\0\end{matrix}\right | + \int_{0}^{\frac{\pi}{2}}\cos(x)\quad d{\sin^{n-1}(x)} In=sinn1(x)cos(x)2π0+02πcos(x)dsinn1(x)
   (注:F( π 2 \frac{\pi}{2} 2π − - F(0)的值↑)
   
I n = 0 − 0 + ∫ 0 π 2 cos ⁡ 2 ( x ) ⋅ ( n − 1 ) sin ⁡ n − 2 ( x ) d x I_n=0-0 + \int_{0}^{\frac{\pi}{2}}\cos^2(x)\cdot (n-1)\sin^{n-2}(x)dx In=00+02πcos2(x)(n1)sinn2(x)dx

I n = ( n − 1 ) ∫ 0 π 2 ( 1 − sin ⁡ 2 x ) sin ⁡ n − 2 ( x ) d x I_n=(n-1 )\int_{0}^{\frac{\pi}{2}}(1-\sin^2x)\sin^{n-2}(x)dx In=(n1)02π(1sin2x)sinn2(x)dx

最终解得
I n = ( n − 1 ) ∫ 0 π 2 sin ⁡ n − 2 ( x ) d x − ( n − 1 ) ∫ 0 π 2 s i n n ( x ) d x ① I_n=(n-1 )\int_{0}^{\frac{\pi}{2}}\sin^{n-2}(x)dx - (n-1 )\int_{0}^{\frac{\pi}{2}}sin^{n}(x)dx\quad① In=(n1)02πsinn2(x)dx(n1)02πsinn(x)dx

对①进行分析可得到

I n = ( n − 1 ) I n − 2 − ( n − 1 ) I n I_n=(n-1)I_{n-2}-(n-1) I_n In=(n1)In2(n1)In
移项后可得
n ⋅ I n = ( n − 1 ) I n − 2 n\cdot I_n=(n-1)I_{n-2} nIn=(n1)In2
最终解得
I n = ( n − 1 ) n I n − 2 ② I_n=\frac{(n-1)}{n}I_{n-2}\quad② In=n(n1)In2

对②分析可得

I n = ( n − 1 ) n I n − 2 = ( n − 1 ) ( n − 3 ) n ( n − 2 ) I n − 4 = ( n − 1 ) ( n − 3 ) ( n − 5 ) n ( n − 2 ) ( n − 4 ) I n − 6 = . . . . ③ I_n=\frac{(n-1)}{n}I_{n-2}=\frac{(n-1)(n-3)}{n(n-2)}I_{n-4}=\frac{(n-1)(n-3)(n-5)}{n(n-2)(n-4)}I_{n-6}=....\quad③ In=n(n1)In2=n(n2)(n1)(n3)In4=n(n2)(n4)(n1)(n3)(n5)In6=....

证毕

四、由于对称性(此处不对对称性再做证明)

∫ 0 π 2 f ( s i n x ) \int_{0}^{\frac{\pi}{2}}f({sinx}) 02πf(sinx)= ∫ 0 π 2 f ( c o s x ) \int_{0}^{\frac{\pi}{2}}f({cosx)} 02πf(cosx)成立

所以

I n = ∫ 0 π 2 cos ⁡ n ( x )   d x I_n=\int_{0}^{\frac{\pi}{2}}{\cos^n(x)}\, dx In=02πcosn(x)dx

成立

五、例题

求解 I 6 = ∫ 0 π 2 sin ⁡ 6 ( x )   d x I_6 = \int_{0}^{\frac{\pi}{2}}{\sin^6(x)}\, dx I6=02πsin6(x)dx

解:
由③得
I 6 = 5 ⋅ 3 ⋅ 1 6 ⋅ 4 ⋅ 2 I 0 I_6 = \frac{5\cdot 3\cdot 1}{6\cdot4 \cdot 2}I_0 I6=642531I0
I 0 = π 2 I_0 = \frac{\pi}{2} I0=2π
故解得
I 6 = 5 ! ! 6 ! ! ⋅ π 2 I_6 = \frac{5!!}{6!!}\cdot\frac{\pi}{2} I6=6!!5!!2π
满足结论

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值