第一篇 NC数据深度优先检索(Python)

本文介绍了如何利用Python的netCDF4库进行NetCDF数据的深度优先检索。NetCDF是一种通用数据格式,尤其在环境和地学领域常见。通过创建一个类,使用递归方法遍历文件的group结构,实现对数据的查找。文中提供了安装库的步骤、代码实现和使用示例。
摘要由CSDN通过智能技术生成

第一篇 NC数据深度优先检索

NetCDF是UCAR开发的一种通用数据格式,可能做环境或者地学的人会比较熟悉。这种数据格式非常方便使用者读取和编辑,很多语言都可以对这种格式进行读写。这种格式会保留原有数据的长度、维度等信息,就像Python的.npy,matlab的.m和IDL的.sav文件一样。NetCDF以.nc格式对数据进行存储,所存储的数据结构可以用一个数表示[1]:

Stephen R Clark,https://www.researchgate.net/figure/The-hierarchical-group-structure-for-an-example-output-file-in-NetCDF-format-The-groups_fig4_308964752
树的根节点表示我们访问的nc文件,每一个子节点表示一个group,一个nc文件可能会包含很多group,而每一个group下面也可能包含很多新的group。这一个棵树的叶子就代表了该文件所储存的数据集,根节点和子节点都可以链接到很多数据集。所以,nc文件下存储的数据结构可能会很复杂,当我们知道所需数据的key(通常就是数据名称)的时候,便可以通过深度优先检索的方式对数据进行查找。

代码实现

Anaconda目前并没有自带netCDF4的库,所以首先我们需要自行安装这个库。和其他大部分库的安装一样,打开命令行窗口,键入:

pip install netCDF4

pip就会自动帮助你安装好netCDF4。

我一般会使用Spyder或者vim对脚本进行编辑,我们需要先导入所需要的库:

import netCDF4 as nc
from numpy import *

然后我们定义一个类,简单地来说这个类的核心就是一个栈,用来暂存我们在检索过程中遇到的节点,包括根节点和子节点。当我们对某一个节点检索,没有发现我们所要找的数据时,就从这个栈的栈尾取出一个节点继续检索。这个地方不明白的话可以先了解一下深度优先检索

class deep_search_nc:
    def __init__(self,nc_ob): #初始化,把根节点放入栈内
        self.ob_list_i = [nc_ob]
        self
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值