18 顺时针打印矩阵
18.1 题目描述
输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字,例如,如果输入如下4 X 4矩阵: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 则依次打印出数字1,2,3,4,8,12,16,15,14,13,9,5,6,7,11,10.
18.2 解题思路
本题可以先打印出矩阵的第一行,然后逆时针旋转,再打印第一行,直至矩阵为空时,停止打印。代码如下:
class Solution:
# matrix类型为二维列表,需要返回列表
def printMatrix(self, matrix):
if not matrix:
return None
result = []
while matrix:
result.extend(matrix[0])
matrix = self.reverseMatrix(matrix[1:])
return result
def reverseMatrix(self, matrix):
if not matrix:
return None
m = len(matrix)
n = len(matrix[0])
new_matrax = []
for i in range(n-1, -1, -1):
matrix_1 = []
for j in range(m):
matrix_1.append(matrix[j][i])
new_matrax.append(matrix_1)
return new_matrax
19 包含min函数的栈
19.1 题目描述
定义栈的数据结构,请在该类型中实现一个能够得到栈中所含最小元素的min函数(时间复杂度应为O(1))。
19.2 解题思路
本题中要实现栈的元素添加、弹出、取最小值。栈的元素添加、弹出相对简单。遵循栈的“先进后出”原则,只需调用列表的append、pop方法即可。要想实现时间复杂度为O(1)的min方法,可以设置辅助栈,每次判断加入的值是不是最小,若最小,添加到辅助栈中。如果弹出的是栈中的最小值,就把辅助栈中的最小值也删掉。代码如下:
class Solution:
def __init__(self):
self.stack = []
self.min_stack = []
def push(self, node):
if not self.min_stack:
self.min_stack.append(node)
if self.min_stack[-1] > node:
self.min_stack.append(node)
return self.stack.append(node)
def pop(self):
if self.min_stack[-1] == self.stack[-1]:
self.min_stack.pop()
return self.stack.pop()
def top(self):
return self.stack[-1]
def min(self):
return self.min_stack[-1]
20 栈的压入、弹出序列
20.1 题目描述
输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否可能为该栈的弹出顺序。假设压入栈的所有数字均不相等。例如序列1,2,3,4,5是某栈的压入顺序,序列4,5,3,2,1是该压栈序列对应的一个弹出序列,但4,3,5,1,2就不可能是该压栈序列的弹出序列。(注意:这两个序列的长度是相等的)
20.2 解题思路
本题的大概思路为设置一个辅助栈stack,将pushV里的数字压入stack,如果压入的数字与popV里的一样,那么就将pushV和popV里的这个数字删除,并检查popV的前一个数字是否为stack中的压入数字,是就删除。直到pushV里的数字全部压入辅助栈中。这时再检查辅助栈剩下的数字与popV中是否一样,一样就返回True。代码如下:
class Solution:
def __init__(self):
self.stack = []
def IsPopOrder(self, pushV, popV):
pushV = list(reversed(pushV))
popV = list(reversed(popV))
while pushV:
if pushV[-1] != popV[-1]:
self.stack.append(pushV.pop())
else:
pushV.pop()
popV.pop()
if pushV:
while self.stack[-1] == popV[-1]:
self.stack.pop()
popV.pop()
if self.stack == popV:
return True
return False
后来觉得自己的思路实现过程有点繁琐,又参考了其他的实现方法。其大致思路差不多。只是在判断辅助栈与popV里的数字时,这里是将其一直删除,若最后辅助栈里没有数字,则说明删完了,返回True,否则返回False。代码如下:
class Solution:
def __init__(self):
self.stack = []
def IsPopOrder(self, pushV, popV):
for i in pushV:
self.stack.append(i)
while len(self.stack) and self.stack[-1] == popV[0]:
self.stack.pop()
popV.pop(0)
if len(self.stack):
return False
return True
21 从上往下打印二叉树
21.1 题目描述
从上往下打印出二叉树的每个节点,同层节点从左至右打印。
21.2 解题思路
本题要求从上到下、从左到右的打印二叉树节点,一层一层的遍历二叉树,可设一个辅助列表,借助队列的性质完成。当节点的左右子树不为空时,就将节点添加到辅助列表中,队列遵循“先进先出”的原则,在一端加入节点,另一端输出节点。当辅助列表长度为0时,就说明已经完成遍历。需要注意的是,在这里当二叉树为空时,输出的是[],而不是None。代码如下:
class Solution:
# 返回从上到下每个节点值列表,例:[1,2,3]
def PrintFromTopToBottom(self, root):
result = []
sequence = []
if root is None:
return []
sequence.append(root)
while len(sequence) > 0:
node = sequence.pop()
result.append(node.val)
if node.left is not None:
sequence.insert(0, node.left)
if node.right is not None:
sequence.insert(0, node.right)
return result
22 二叉搜索树的后序遍历序列
22.1 题目描述
输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果。如果是则输出Yes,否则输出No。假设输入的数组的任意两个数字都互不相同。
22.2 解题思路
首先要弄清楚二叉搜索树概念。在二叉搜索树中树的根节点总是大于左右子树节点的值。在后序遍历中,根节点总是在序列的最后,因此可按大小值区分左右子树。分开后,若右子树中含有比根节点大的节点,则说明该数组不是二叉搜索树的后序遍历。需要注意的是边界条件。若分开后的左子树为空,则继续遍历右子树;若右子树为空,则返回True,否则递归判断左右子树。代码如下:
class Solution:
def __init__(self):
self.index = 0
def VerifySquenceOfBST(self, sequence):
if not sequence:
return False
if len(sequence) == 1:
return True
node = sequence[-1]
for i in range(len(sequence)):
if sequence[i] > node:
self.index = i
break
if i == len(sequence) - 1:
self.index = i
left = sequence[:self.index]
right = sequence[self.index:-1]
if not right:
return True
else:
for i in range(len(right)):
if right[i] < node:
return False
if left:
return self.VerifySquenceOfBST(left) and self.VerifySquenceOfBST(right)
else:
return self.VerifySquenceOfBST(right)
自我感觉自己写的复杂,又参考其他答案,觉得有一种思路不错。代码如下:
class Solution:
def __init__(self):
self.index = 0
def VerifySquenceOfBST(self, sequence):
if not sequence:
return False
return self.Right_Left(sequence)
def Right_Left(self, sequence):
if not sequence:
return True
node = sequence[-1]
for i in range(len(sequence)):
if sequence[i] > node:
self.index = i
break
if i == len(sequence) - 1:
self.index = i
left = sequence[:self.index]
right = sequence[self.index:-1]
if right:
for i in range(len(right)):
if right[i] < node:
return False
return self.Right_Left(left) and self.Right_Left(right)
这种解法设了一个判断左右子树的函数,当传入的函数为空时,返回True,省去了那么多的判断。