Coursera-吴恩达-深度学习(DL)专项课-课程笔记与编程实战-汇总

本文是对Coursera上吴恩达主讲的深度学习专项课程的全面梳理和笔记,涵盖深度学习基础、优化技巧、卷积神经网络、循环神经网络等主题,并结合实践项目进行深入探讨。同时,分享了学习过程中的思考与经验,供其他学习者参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.介绍

本文主要基于Coursera上deeplearning.ai的吴恩达主讲的经典课程——深度学习专项课程(Deep Learning Specialization)
将全部课程内容进行梳理并结合个人理解进行了总结。意在总结笔记加深理解,同时也为其他学习该课程或想学习DL相关知识的同学提供参考。
因本人仍在学习过程中,水平有限,难免有疏忽与错误,诚请各位指正。

2.参考资料

课程原地址:深度学习 专项课程
B站转载:(吴恩达深度学习第一步)神经网络和深度学习
课程作业代码:(更新中~)

3.课程笔记

1.1 深度学习介绍 (Introduction to deep learning)
1.2 神经网络基础 (Neural Networks Basics)
1.3 浅层神经网络 (Shallow neural networks)
1.4 深度神经网络 (Deep Neural Networks)

2.1 深度学习优化技巧——网络正则化、归一化、参数初始化 (Practical aspects of Deep Learning)
2.2 深度学习优化技巧——优化算法 (Optimization algorithms)
2.3 深度学习优化技巧——超参数调整、逐层归一化 (Hyperparameter tuning and Layer-wise Normalization)

3.1 工程化机器学习——机器学习策略1 (ML Strategy (1))
3.2 机器学习策略2 (ML Strategy (2))

4.1 卷积神经网络基础 (Foundations of Convolutional Neural Networks)
4.2 深度卷积模型:实例学习 (Deep convolutional models: case studies)
4.3 目标检测 (Object detection)
4.4 特殊应用:人脸识别与风格迁移 (Special applications: Face recognition & Neural style transfer)

5.1 循环神经网络 (Recurrent Neural Networks)
5.2 自然语言处理与词嵌入 (Natural Language Processing & Word Embeddings)
5.3 序列模型与注意力机制 (Sequence models & Attention mechanism)

4.编程实战

等待更新中~


持续更新中,敬请关注~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ogmx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值