最近开始接触acm里面的一些递推的题型,在高中也就是所谓的找规律,这种题题目一般都很花哨,内容也很多,但是只要理解透了题意,其实它的代码非常简单,就比如杭电的2047题,刚开始想不通的时候真的觉得没有办法去做,但当找到了规律后,就觉得其实很简单,题目如下:
今年的ACM暑期集训队一共有18人,分为6支队伍。其中有一个叫做EOF的队伍,由04级的阿牛、XC以及05级的COY组成。在共同的集训生活中,大家建立了深厚的友谊,阿牛准备做点什么来纪念这段激情燃烧的岁月,想了一想,阿牛从家里拿来了一块上等的牛肉干,准备在上面刻下一个长度为n的只由"E" "O" "F"三种字符组成的字符串(可以只有其中一种或两种字符,但绝对不能有其他字符),阿牛同时禁止在串中出现O相邻的情况,他认为,"OO"看起来就像发怒的眼睛,效果不好。
你,NEW ACMer,EOF的崇拜者,能帮阿牛算一下一共有多少种满足要求的不同的字符串吗?
PS: 阿牛还有一个小秘密,就是准备把这个刻有 EOF的牛肉干,作为神秘礼物献给杭电五十周年校庆,可以想象,当校长接过这块牛肉干的时候该有多高兴!这里,请允许我代表杭电的ACMer向阿牛表示感谢!
再次感谢!
Input
输入数据包含多个测试实例,每个测试实例占一行,由一个整数n组成,(0<n<40)。
Output
对于每个测试实例,请输出全部的满足要求的涂法,每个实例的输出占一行。
Sample Input
1 2
Sample Output
3 8
其实,对于长度为n的字符串,只要知道长度为n-1的字符串的数量,就很好办了,设长度为n的字符串的数量为f(n),f(n-1)=s(n-1)+t(n-1),其中长度为n-1且以e或者f结尾的字符串数量为s(n-1),以o结尾的数量为t(n-1)。分析可以知道,f(n)=3*s(n-1)+2*t(n-1)=2*f(n-1)+s(n-1),这个s(n-1)难住我好久,但其实只要在往下推一步,就很容易知道s(n-1)=2*f(n-2),即f(n)=f(n-1)*2+2*f(n-2)。最后ac的代码如下:
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n;
while(cin>>n)
{
long long int s[50];
s[1]=3,s[2]=8;
for(int i=3;i<=n;i++)
s[i]=2*s[i-1]+2*s[i-2];
cout<<s[n];
cout<<endl;
}
return 0;
}