Correction of the overexposed region in digital color image
阅读札记
阅读札记
论文发表于2014年的IEEE Transactions on Consumer Electronics。
Abstract
本文提出了一种新的过曝光校正方法,它由亮度校正和色度恢复两部分组成。
亮度校正:
最小化本文提出的具有两项的能量泛函得到修正后的OR的亮度(两项分别保留二维高斯函数建模的亮度和原始亮度的梯度)。
色度恢复:
(1)进行颜色拉伸以补偿OR周围的褪色颜色。
(2)通过传播相邻非过曝光区域(非OR)的拉伸颜色来恢复OR的颜色。
Method
算法框架图
为了分别处理过曝光区域OR的亮度和色度,首先将原始图像转换为 Y C b C r YCbCr YCbCr空间,其中 Y Y Y通道代表亮度, C b Cb Cb通道和 C r Cr Cr通道代表色度。在 Y Y Y通道中检测到OR。对于检测到的OR,先进行亮度校正,然后进行色度恢复。
1、过曝光区域检测
设置阈值为230,将图像 Y Y Y通道中超过阈值的区域定义为一个OR,将所有OR中像素总数不小于40的像素区域定义为一个过度曝光斑点OB。
2、亮度校正
(1) 计算OB边界上像素的高斯函数方差
观测到物体的亮度在物体质心处最大,在远离质心处逐渐减小,本文利用提出的二维高斯模型估计物体的亮度。利用距离变换得到的距离映射来确定每个OB的质心位置(取OB中像素点
i
i
i,找到距离像素
i
i
i最近的非OB像素点
j
j
j,用像素点
i
i
i和像素点
j
j
j的距离
d
i
j
d_{ij}
dij标记像素点
i
i
i,对图像中所有OB进行该操作得到距离图,距离图中具有最大标签的像素确定为每个OB的质心)。
由于物体的形状不是规则的,光的亮度不能用一个高斯函数来估计。因此,对每个物体使用多个高斯函数,利用物体质心像素和边界像素的亮度值,得到每个高斯函数的方差。设
B
B
B表示位于OB边界上一像素宽的一组像素。利用
Y
Y
Y通道在像素
i
∈
B
i∈B
i∈B处的强度值和OB的质心像素
p
p
p,得到像素
i
i
i处高斯函数的方差 。
Y
i
,
Y
p
Y_i,Y_p
Yi,Yp:分别为像素
i
i
i和
p
p
p的亮度
d
(
i
,
p
)
d_{(i,p)}
d(i,p):
i
i
i和
p
p
p之间的欧几里德距离
(2) 计算高斯模型亮度
设
O
O
O和
O
‾
\overline{O}
O为图像中过曝光像素和非过曝光像素的集合。那么,高斯模型的亮度
Y
G
Y^G
YG定义如下:
σ
j
2
σ_{j^2}
σj2:像素
j
j
j的方差
若像素
j
j
j,
j
∈
O
j∈O
j∈O,位于某OB中像素质心与像素
i
∈
B
i∈B
i∈B的直线上,则
σ
j
=
σ
i
σ_j = σ_i
σj=σi。
上图显示了使用二维高斯建模产生的
Y
Y
Y通道。图(c)和(d)分别为图(a)和(b)中红色方框标记的OB的3D轮廓。由于图(a)中以蓝线为界的OB包含少量纹理,OR的轮廓看起来像一个平面形状,如图(c)所示。另一方面,在图(d)中,与图(c)相比,估计的亮度轮廓形状遵循二维高斯模型。
(3) 保留纹理细节
检测到的OR中存在纹理细节,这就要求在修正亮度的同时保留原图像的梯度。本文提出新的能量泛函,得到修正后的亮度
Y
∗
Y ^*
Y∗
‖
‖
2
‖ ‖_2
‖‖2:
l
2
l_2
l2范数,
γ
γ
γ:平衡第一项和第二项的权重因子
∇
Y
j
∇Y_j
∇Yj和
∇
Y
^
j
∇\hat{Y} _j
∇Y^j:分别表示
Y
Y
Y和
Y
^
\hat{Y }
Y^在像素
j
j
j处的梯度
⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
⭐新能量泛函由两项组成:数据项、梯度项 ⭐
⭐数据项
(
Y
^
j
−
Y
j
G
)
2
(\hat{Y} _j-Y_j^G)^2
(Y^j−YjG)2:最小化
Y
^
\hat{Y}
Y^和高斯模型亮度之间的差异 ⭐
⭐梯度项
γ
‖
∇
Y
^
j
−
∇
Y
j
‖
2
2
γ‖ ∇\hat{Y} _j-∇Y_j‖_2^2
γ‖∇Y^j−∇Yj‖22:通过最小化
Y
^
\hat{Y}
Y^和
Y
Y
Y的导数差来保持原始图像梯度。 ⭐
⭐ 当
γ
=
0
γ=0
γ=0时,
Y
^
j
∗
=
Y
G
\hat{Y} _j^*=Y^G
Y^j∗=YG ⭐
⭐ 当
γ
→
∞
γ→∞
γ→∞时,数据项的影响逐渐减小,
Y
^
j
∗
\hat{Y} _j^*
Y^j∗收敛于
Y
Y
Y。 ⭐
⭐ 故可以通过调整
γ
γ
γ来控制保留高斯模型的亮度和保留原始图像的梯度之间的权衡。 ⭐
⭐ 本文
γ
=
0.5
γ=0.5
γ=0.5取得最佳效果 ⭐
⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
(a)输入图像
(b)亮度图像,OR中存在纹理细节
(c)高斯模型亮度图像
(d)本文方法得到的合成亮度图像,保留了纹理细节
3、色度恢复
(1) 颜色拉伸
颜色越鲜艳,每个颜色通道的强度和亮度的差异就越大,于是通过控制每个颜色通道与亮度值的差值来补偿褪色的颜色。为此,首先从RGB空间的每个颜色通道中减去亮度强度,如下所示:
D
i
D_i
Di:像素
i
i
i处的差分矩阵
O
i
O_i
Oi:
O
i
=
[
R
i
,
G
i
,
B
i
]
T
O_i=[R_i,G_i,B_i]^T
Oi=[Ri,Gi,Bi]T,
R
i
R_i
Ri,
G
i
G_i
Gi,
B
i
B_i
Bi分别表示原始图像在像素
i
i
i处的RGB空间强度
像素
i
i
i处拉伸颜色在RGB空间下的强度
O
^
i
\hat{O} _i
O^i为:
β
i
β_i
βi表示给出的权重因子:
σ
~
i
\tilde{σ}_i
σ~i:RGB空间中像素
i
i
i处的通道强度的标准差
⭐像素
i
i
i褪色情况↓,
σ
~
i
\tilde{σ}_i
σ~i↑,
D
i
D_i
Di由
β
i
β_i
βi加权接近0,拉伸后的颜色变得与原始颜色相似。
⭐像素
i
i
i褪色情况↑,
σ
~
i
→
0
\tilde{σ}_i→0
σ~i→0,
β
i
β_i
βi↑,颜色会得到更大的拉伸和补偿。
如图4(b)所示,拉伸后的图像颜色比图4(a)中原始图像颜色更深、更鲜艳。
(2) 色度估计
拉伸图像生成,通过使用双边非线性滤波器,将过度曝光像素的颜色从邻近像素的拉伸颜色传播。根据亮度相似的相邻像素通常具有相似的颜色,利用修正后的亮度与原始颜色的差异来确定该非线性滤波器的权重。设
C
m
=
[
C
b
m
,
C
r
m
]
C_m=[Cb_m,Cr_m]
Cm=[Cbm,Crm],其中
C
b
m
Cb_m
Cbm和
C
r
m
Cr_m
Crm分别为原始图像在像素
m
m
m处
C
b
Cb
Cb通道和
C
r
Cr
Cr通道的强度,则计算出滤光权
w
(
m
,
n
)
w_{(m,n)}
w(m,n):
G
G
G:高斯函数
m
,
n
m,n
m,n:分别为过曝光像素
m
m
m和其附近的邻像素
得到像素
m
m
m处的色度恢复结果如下:
C
^
n
=
[
C
^
b
n
,
C
^
r
n
]
\hat{C}_n=[\hat{C}b_n,\hat{C}r_n]
C^n=[C^bn,C^rn],
C
^
b
n
\hat{C}b_n
C^bn和
C
^
r
n
\hat{C}r_n
C^rn是
C
b
Cb
Cb和
C
r
Cr
Cr通道拉伸图像
Ω
Ω
Ω:一组像素属于
S
∪
O
‾
{S∪\overline{O}}
S∪O在3×3的
m
a
s
k
mask
mask,
S
S
S:已经纠正颜色的一组像素
Experiment
1、定性分析
(a)为输入图像,(b)(c)为其他方法效果图,(d)为本文方法效果图
2、时间复杂度分析
Conclusion
本文提出了一种基于能量泛函和颜色拉伸的过曝光校正方法。对各种测试图像的实验结果表明,与传统方法相比,该方法不仅具有更好的主观质量,而且处理时间较短。