Correction of the overexposed region in digital color image阅读札记

本文提出了一种针对数字彩色图像过曝光区域的校正方法,包括亮度校正和色度恢复两个步骤。亮度校正通过优化带有数据项和梯度项的能量泛函来实现,同时保留图像纹理细节。色度恢复则通过颜色拉伸和双边滤波恢复过曝光区域的颜色。实验结果表明,该方法在保持图像质量的同时,处理时间较短。
摘要由CSDN通过智能技术生成

Correction of the overexposed region in digital color image
阅读札记

  论文发表于2014年的IEEE Transactions on Consumer Electronics。

Abstract

  本文提出了一种新的过曝光校正方法,它由亮度校正色度恢复两部分组成。
亮度校正:
  最小化本文提出的具有两项的能量泛函得到修正后的OR的亮度(两项分别保留二维高斯函数建模的亮度原始亮度的梯度)。
色度恢复:
  (1)进行颜色拉伸以补偿OR周围的褪色颜色。
  (2)通过传播相邻非过曝光区域(非OR)的拉伸颜色来恢复OR的颜色。

Method

算法框架图

在这里插入图片描述

  为了分别处理过曝光区域OR的亮度和色度,首先将原始图像转换为 Y C b C r YCbCr YCbCr空间,其中 Y Y Y通道代表亮度, C b Cb Cb通道和 C r Cr Cr通道代表色度。在 Y Y Y通道中检测到OR。对于检测到的OR,先进行亮度校正,然后进行色度恢复。

1、过曝光区域检测

  设置阈值为230,将图像 Y Y Y通道中超过阈值的区域定义为一个OR,将所有OR中像素总数不小于40的像素区域定义为一个过度曝光斑点OB。

2、亮度校正

(1) 计算OB边界上像素的高斯函数方差
  观测到物体的亮度在物体质心处最大,在远离质心处逐渐减小,本文利用提出的二维高斯模型估计物体的亮度。利用距离变换得到的距离映射来确定每个OB的质心位置(取OB中像素点 i i i,找到距离像素 i i i最近的非OB像素点 j j j,用像素点 i i i和像素点 j j j的距离 d i j d_{ij} dij标记像素点 i i i,对图像中所有OB进行该操作得到距离图,距离图中具有最大标签的像素确定为每个OB的质心)。
  由于物体的形状不是规则的,光的亮度不能用一个高斯函数来估计。因此,对每个物体使用多个高斯函数,利用物体质心像素和边界像素的亮度值,得到每个高斯函数的方差。设 B B B表示位于OB边界上一像素宽的一组像素。利用 Y Y Y通道在像素 i ∈ B i∈B iB处的强度值和OB的质心像素 p p p,得到像素 i i i处高斯函数的方差 。
在这里插入图片描述
   Y i , Y p Y_i,Y_p Yi,Yp:分别为像素 i i i p p p的亮度
   d ( i , p ) d_{(i,p)} d(i,p) i i i p p p之间的欧几里德距离

(2) 计算高斯模型亮度
  设 O O O O ‾ \overline{O} O为图像中过曝光像素和非过曝光像素的集合。那么,高斯模型的亮度 Y G Y^G YG定义如下:
在这里插入图片描述
   σ j 2 σ_{j^2} σj2:像素 j j j的方差
  若像素 j j j, j ∈ O j∈O jO,位于某OB中像素质心与像素 i ∈ B i∈B iB的直线上,则 σ j = σ i σ_j = σ_i σj=σi
在这里插入图片描述
  上图显示了使用二维高斯建模产生的 Y Y Y通道。图(c)和(d)分别为图(a)和(b)中红色方框标记的OB的3D轮廓。由于图(a)中以蓝线为界的OB包含少量纹理,OR的轮廓看起来像一个平面形状,如图(c)所示。另一方面,在图(d)中,与图(c)相比,估计的亮度轮廓形状遵循二维高斯模型。

(3) 保留纹理细节
  检测到的OR中存在纹理细节,这就要求在修正亮度的同时保留原图像的梯度。本文提出新的能量泛函,得到修正后的亮度 Y ∗ Y ^* Y
在这里插入图片描述
   ‖ ‖ 2 ‖ ‖_2 2 l 2 l_2 l2范数,
   γ γ γ:平衡第一项和第二项的权重因子
   ∇ Y j ∇Y_j Yj ∇ Y ^ j ∇\hat{Y} _j Y^j:分别表示 Y Y Y Y ^ \hat{Y } Y^在像素 j j j处的梯度
⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
⭐新能量泛函由两项组成:数据项、梯度项                      ⭐
数据项 ( Y ^ j − Y j G ) 2 (\hat{Y} _j-Y_j^G)^2 (Y^jYjG)2:最小化 Y ^ \hat{Y} Y^和高斯模型亮度之间的差异              ⭐
梯度项 γ ‖ ∇ Y ^ j − ∇ Y j ‖ 2 2 γ‖ ∇\hat{Y} _j-∇Y_j‖_2^2 γY^jYj22:通过最小化 Y ^ \hat{Y} Y^ Y Y Y的导数差来保持原始图像梯度。      ⭐
⭐  当 γ = 0 γ=0 γ=0时, Y ^ j ∗ = Y G \hat{Y} _j^*=Y^G Y^j=YG                           ⭐
⭐  当 γ → ∞ γ→∞ γ时,数据项的影响逐渐减小, Y ^ j ∗ \hat{Y} _j^* Y^j收敛于 Y Y Y。              ⭐
⭐  故可以通过调整 γ γ γ来控制保留高斯模型的亮度和保留原始图像的梯度之间的权衡。  ⭐
⭐  本文 γ = 0.5 γ=0.5 γ=0.5取得最佳效果                           ⭐
⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
在这里插入图片描述
(a)输入图像
(b)亮度图像,OR中存在纹理细节
(c)高斯模型亮度图像
(d)本文方法得到的合成亮度图像,保留了纹理细节

3、色度恢复

(1) 颜色拉伸
  颜色越鲜艳,每个颜色通道的强度和亮度的差异就越大,于是通过控制每个颜色通道与亮度值的差值来补偿褪色的颜色。为此,首先从RGB空间的每个颜色通道中减去亮度强度,如下所示:
在这里插入图片描述
   D i D_i Di:像素 i i i处的差分矩阵
   O i O_i Oi O i = [ R i , G i , B i ] T O_i=[R_i,G_i,B_i]^T Oi=[Ri,Gi,Bi]T, R i R_i Ri, G i G_i Gi, B i B_i Bi分别表示原始图像在像素 i i i处的RGB空间强度
  像素 i i i处拉伸颜色在RGB空间下的强度 O ^ i \hat{O} _i O^i为:
在这里插入图片描述   β i β_i βi表示给出的权重因子:
在这里插入图片描述
   σ ~ i \tilde{σ}_i σ~i:RGB空间中像素 i i i处的通道强度的标准差
⭐像素 i i i褪色情况↓, σ ~ i \tilde{σ}_i σ~i↑, D i D_i Di β i β_i βi加权接近0,拉伸后的颜色变得与原始颜色相似。
⭐像素 i i i褪色情况↑, σ ~ i → 0 \tilde{σ}_i→0 σ~i0, β i β_i βi↑,颜色会得到更大的拉伸和补偿。
在这里插入图片描述
  如图4(b)所示,拉伸后的图像颜色比图4(a)中原始图像颜色更深、更鲜艳。
(2) 色度估计
  拉伸图像生成,通过使用双边非线性滤波器,将过度曝光像素的颜色从邻近像素的拉伸颜色传播。根据亮度相似的相邻像素通常具有相似的颜色,利用修正后的亮度与原始颜色的差异来确定该非线性滤波器的权重。设 C m = [ C b m , C r m ] C_m=[Cb_m,Cr_m] Cm=[Cbm,Crm],其中 C b m Cb_m Cbm C r m Cr_m Crm分别为原始图像在像素 m m m C b Cb Cb通道和 C r Cr Cr通道的强度,则计算出滤光权 w ( m , n ) w_{(m,n)} w(m,n)
在这里插入图片描述
   G G G:高斯函数
   m , n m,n m,n:分别为过曝光像素 m m m和其附近的邻像素
  得到像素 m m m处的色度恢复结果如下:
在这里插入图片描述
   C ^ n = [ C ^ b n , C ^ r n ] \hat{C}_n=[\hat{C}b_n,\hat{C}r_n] C^n=[C^bn,C^rn], C ^ b n \hat{C}b_n C^bn C ^ r n \hat{C}r_n C^rn C b Cb Cb C r Cr Cr通道拉伸图像
   Ω Ω Ω:一组像素属于 S ∪ O ‾ {S∪\overline{O}} SO在3×3的 m a s k mask mask
   S S S:已经纠正颜色的一组像素

Experiment

1、定性分析

在这里插入图片描述
(a)为输入图像,(b)(c)为其他方法效果图,(d)为本文方法效果图

2、时间复杂度分析

在这里插入图片描述

Conclusion

  本文提出了一种基于能量泛函和颜色拉伸的过曝光校正方法。对各种测试图像的实验结果表明,与传统方法相比,该方法不仅具有更好的主观质量,而且处理时间较短。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值