HDFS中文件数据格式

本文介绍了Hadoop中两种主要的文件格式:面向行和面向列。面向行的格式包括SequenceFile、MapFile和AvroDatafile,适用于需要处理整行数据的场景;面向列的格式如Parquet、RCFile和ORCFile,适用于仅需要访问一行中部分字段的情况。文章还讨论了这些格式的优缺点。
摘要由CSDN通过智能技术生成

Hadoop中的文件格式大致上分为面向行和面向列两类:

面向行:同一行的数据存储在一起,即连续存储。SequenceFile,MapFile,Avro Datafile。采用这种方式,如果只需要访问行的一小部分数据,亦需要将整行读入内存,推迟序列化一定程度上可以缓解这个问题,但是从磁盘读取整行数据的开销却无法避免。面向行的存储适合于整行数据需要同时处理的情况。

面向列:整个文件被切割为若干列数据,每一列数据一起存储。Parquet , RCFile,ORCFile。面向列的格式使得读取数据时,可以跳过不需要的列,适合于只处于行的一小部分字段的情况。但是这种格式的读写需要更多的内存空间,因为需要缓存行在内存中(为了获取多行中的某一列)。同时不适合流式写入,因为一旦写入失败,当前文件无法恢复,而面向行的数据在写入失败时可以重新同步到最后一个同步点,所以Flume采用的是面向行的存储格式。
在这里插入图片描述
参考网址:
https://blog.csdn.net/javastart/article/details/52739570
hdfs文件格式参考网址:
https://blog.csdn.net/weixin_40235225/article/details/85118333

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值