有趣的背包问题——动态规划

背包问题

现在,想像自己是一个小偷,进入首饰店之后有一些物品,每个物品都有其价值和重量,我们都想装入背包,但是空间有限,所以我们要计算一下我们最多可以带走的价值。
比如我们现在的背包能装10,物品有重量5,4,3,2,1,价值对应1,2,3,4,5。怎样装价值最大?你或许能一眼看出这个问题答案,但是试想100捡物品且具有精确到小数点后两位的价值你还能完美计算么?
可以抽象为以下问题:有N件物品和一个容量为V的背包。第i件物品的重量是w[i],价值是v[i]。求解将哪些物品装入背包可使这些物品的重量总和不超过背包容量,且价值总和最大。
所以这个问题该怎么解决?当步骤很多的时候我们似乎倾向于将其转变为简单问题的重复,这称为递归思想。

基本思路

这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

f[i][v]=max{ f[i-1][v], f[i-1][v-w[i]]+v[i] }。

可以压缩空间,f[v]=max{f[v],f[v-w[i]]+v[i]}

这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中"这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为"前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为"前i-1件物品放入剩下的容量为v-w[i]的背包中",此时能获得的最大价值就是f [i-1][v-w[i]]再加上通过放入第i件物品获得的价值v[i]。

注意f[v]有意义当且仅当存在一个前i件物品的子集,其费用总和为f[v]。所以按照这个方程递推完毕后,最终的答案并不一定是f[N] [V],而是f[N][0…V]的最大值。如果将状态的定义中的"恰"字去掉,在转移方程中就要再加入一项f[v-1],这样就可以保证f[N] [V]就是最后的答案。至于为什么这样就可以,由你自己来体会了。
基于这种思路我们可以出如下代码

#include <iostream>
#include<algorithm>

using namespace std;

int main()
{
    int total_weight = 10;
    int w[6] = { 0,5,4,3,2,1 };
    int v[6] = { 0,1,2,3,4,5 };
    int dp[11] = { 0 };
    int path[6][11] = { 0 };

    for (int i = 1; i <= 5; i++)
        for (int j = 10; j >= w[i]; j--)
            if (dp[j] < dp[j - w[i]] + v[i])
            {
                dp[j] = dp[j - w[i]] + v[i];
                path[i][j] = 1;
            }

    int i = 5, j = 10;
    while (i > 0 && j > 0)
    {
        if (path[i][j] == 1)
        {
            cout << i << ' ';
            j -= w[i];
        }
        i--;
    }
    cout << endl;

    cout << "总的价值为: " << dp[10] << endl;
    return 0;
}

空间复杂

以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)。

先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1…N,每次算出来二维数组f[i][0…V]的所有值。那么,如果只用一个数组f [0…V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?

f[i][v]是由f[i-1][v]和f [i-1][v-w[i]]两个子问题递推而来,能否保证在推f[v]时(也即在第i次主循环中推f[v]时)能够得到f[v]和f[v -w[i]]的值呢?事实上,这要求在每次主循环中我们以v=V…0的顺序推f[v],这样才能保证推f[v]时f[v-w[i]]保存的是状态f[i-1][v-c[i]]的值。伪代码如下:

for i=1…N

for v=V…0

f[v]=max{f[v],f[v-w[i]]+v[i]};

其中的f[v]=max{f[v],f[v-w[i]]}一句恰就相当于我们的转移方程f[i][v]=max{f[i-1][v],f[i-1][v-w[i]]},因为的

f[v-w[i]]就相当于原来的f[i-1][v-w[i]]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]由f[i][v-w[i]]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。

0/1背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想,另外,别的类型的背包问题往往也可以转换成0/1背包问题求解。故一定要仔细体会上面基本思路的得出方法,状态转移方程的意义,以及最后怎样优化的空间复杂度。

完全背包问题

有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的体积是c,价值是w。将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大。

基本思路

这个问题非常类似于01背包问题,所不同的是每种物品有无限件。也就是从每种物品的角度考虑,与它相关的策略已并非取或不取两种,而是有取0件、取1件、取2件……等很多种。如果仍然按照解01背包时的思路,令f[i,v]表示前i种物品恰放入一个容量为v的背包的最大权值。仍然可以按照每种物品不同的策略写出状态转移方程,像这样:f[i,v]=max{f[i,v-vi]+wi,f[i-1,v]}。这跟01背包问题一样有O(N*V)个状态需要求解,但求解每个状态的时间则不是常数了,求解状态f[v]的时间是O(v/c),总的复杂度是超过O(VN)的。

将01背包问题的基本思路加以改进,得到了这样一个清晰的方法。这说明01背包问题的方程的确是很重要,可以推及其它类型的背包问题。但我们还是试图改进这个复杂度。

既然01背包问题是最基本的背包问题,那么我们可以考虑把完全背包问题转化为01背包问题来解。最简单的想法是,考虑到第i种物品最多选V/c 件,于是可以把第i种物品转化为V/c件体积及价值均不变的物品,然后求解这个01背包问题。这样完全没有改进基本思路的时间复杂度,但这毕竟给了我们将完全背包问题转化为01背包问题的思路:将一种物品拆成多件物品。

更高效的转化方法是:把第i种物品拆成体积为c2k、价值为w*2k的若干件物品,其中k满足c2k<V。这是二进制的思想,因为不管最优策略选几件第i种物品,总可以表示成若干个2k件物品的和。这样把每种物品拆成O(log(V/c))件物品,是一个很大的改进。但我们有更优的O(VN)的算法。* O(VN)的算法 这个算法使用一维数组,先看伪代码:<pre class"example"> for i=1…N for v=0…V f[v]=max{f[v],f[v-c]+w};

你会发现,这个伪代码与P01的伪代码只有v的循环次序不同而已。为什么这样一改就可行呢?首先想想为什么P01中要按照v=V…0的逆序来循环。这是因为要保证第i次循环中的状态f[v]是由状态f[v-c]递推而来。换句话说,这正是为了保证每件物品只选一次,保证在考虑"选入第i件物品"这件策略时,依据的是一个绝无已经选入第i件物品的子结果f[v-c]。而完全背包的特点恰是每种物品可选无限件,所以在考虑"加选一件第i种物品"这种策略时,却正需要一个可能已选入第i种物品的子结果f[v-c],所以就可以并且必须采用v= 0…V的顺序循环。这就是这个简单的程序为何成立的道理。

这个算法也可以以另外的思路得出。例如,基本思路中的状态转移方程可以等价地变形成这种形式:f[v]=max{f[v],f[v-c]+w},将这个方程用一维数组实现,便得到了代码。

#include <iostream>
#include<algorithm>

using namespace std;

int main()
{
    int total_weight = 10;
    int w[6] = { 0,5,4,3,2,1 };
    int v[6] = { 0,1,2,3,4,5 };
    int dp[11] = { 0 };
    int path[6][11] = { 0 };

    for (int i = 1; i <= 5; i++)
        for (int j = w[i]; j <= 10; j++)
            if (dp[j] < dp[j - w[i]] + v[i])
                {
                    dp[j] = dp[j - w[i]] + v[i];
                    path[i][j]=1;
                }

    int i = 5, j = 10;
    while (i > 0 && j > 0)
    {
        if (path[i][j] == 1)
        {
            cout << i << ' ';
            j -= w[i];
        }
        else
            i--;
    }
    cout << endl;

    cout << "总的价值为: " << dp[10] << endl;
    return 0;
}

多重背包问题

有N种物品和一个容量为V的背包。第i种物品最多有n件可用,每件体积是c,价值是w。求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大。

基本思路

这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为对于第i种物品有n+1种策略:取0件,取1件……取 n件。令f[v]表示前i种物品恰放入一个容量为v的背包的最大权值,则:f[v]=max{f[v-kc]+ kw|0<=k<=n}。复杂度是O(V*∑n)。

另一种好想好写的基该方法是转化为01背包求解:把第i种物品换成n件01背包中的物品,则得到了物品数为∑n的01背包问题,直接求解,复杂度仍然是O(V*∑n)。

但是我们期望将它转化为01背包问题之后能够像完全背包一样降低复杂度。仍然考虑二进制的思想,我们考虑把第i种物品换成若干件物品,使得原问题中第i种物品可取的每种策略–取0…n件–均能等价于取若干件代换以后的物品。另外,取超过n件的策略必不能出现。

方法是:将第i种物品分成若干件物品,其中每件物品有一个系数,这件物品的费用和价值均是原来的费用和价值乘以这个系数。使这些系数分别为 1,2,4,…,2(k-1),n-2k+1,且k是满足n-2^k+1>0的最大整数。例如,如果n为13,就将这种物品分成系数分别为1,2,4,6的四件物品。

分成的这几件物品的系数和为n,表明不可能取多于n件的第i种物品。另外这种方法也能保证对于0…n间的每一个整数,均可以用若干个系数的和表示,这个证明可以分0…2k-1和2k…n两段来分别讨论得出,并不难,希望你自己思考尝试一下。

这样就将第i种物品分成了O(log n)种物品,将原问题转化为了复杂度为O(V*∑log n)的01背包问题,是很大的改进。

多重背包问题同样有O(VN)的算法。这个算法基于基本算法的状态转移方程,但应用单调队列的方法使每个状态的值可以以均摊O⑴的时间求解。由于用单调队列优化的DP已超出了NOIP的范围,故本文不再展开讲解。我最初了解到这个方法是在楼天成的"男人八题"幻灯片上。

这里我们看到了将一个算法的复杂度由O(V∑n)改进到O(V∑log n)的过程,还知道了存在应用超出NOIP范围的知识的O(VN)算法。希望你特别注意"拆分物品"的思想和方法,自己证明一下它的正确性,并用尽量简洁的程序来实现。

#include <iostream>
#include<algorithm>

using namespace std;

int main()
{
    int total_weight = 10;
    int w[6] = { 0,5,4,3,2,1 };
    int v[6] = { 0,1,2,3,4,5 };
    int cot[6] = { 0,1,2,1,2,1 };
    int dp[11] = { 0 };
    int path[6][11] = { 0 };

    for (int i = 1; i <= 5; i++)
        for (int k = 1; k <= cot[i]; k++)
            for (int j = 10; j >= w[i]; j--)
                if (dp[j] < dp[j - w[i]] + v[i])
                {
                    dp[j] = dp[j - w[i]] + v[i];
                    path[i][j] = 1;
                }

    int i = 5, j = 10;
    while (i > 0 && j > 0)
    {
        if (path[i][j] == 1&&cot[i])
        {
            cout << i << ' ';
            j -= w[i];
            cot[i]--;
        }
        else
            i--;
    }
    cout << endl;

    cout << "总的价值为: " << dp[10] << endl;
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值