1002 A+B for Polynomials

  1. 这题可以用数组做,比较简单,我用了链表,锻炼自己对链表的操作
  2. 大致逻辑写出来可以得到前面的17分,后面几个测试点一开始我没过,后来想到了是关于0项的处理,就是两个exp相等,然后coef相加为0的情况。
  3. 注意有可能结果就是一个0多项式,只需要输出0就可以。
    代码如下
#include <stdio.h>
#include <stdlib.h>

struct node{
	int exp;
	double coef;
	node* next;
};
int cnt = 0;		//结果中非零项个数
void Attach(node* p,node* t)
{
	while(p->next) p = p->next;
	t->next = NULL;
	p->next = t;	
}
node* Add(node*p1,node* p2)
{
	node *add,*t,*pre;
	add = new node;
	add->next = NULL;
	pre = add;
	
	p1 = p1->next;
	p2 = p2->next;
	while(p1 && p2){
		int flag = 1;
		t = new node;
		if((p1->exp) > (p2->exp)){
			t->exp = p1->exp;
			t->coef = p1->coef;
			p1 = p1->next;
		}
		else if((p2->exp) > (p1->exp)){
			t->exp = p2->exp;
			t->coef = p2->coef;
			p2 = p2->next;
		}
		else{
			t->exp = p1->exp;
			t->coef = p1->coef + p2->coef;
			if(t->coef==0)flag = 0;
			p1 = p1->next;
			p2 = p2->next;
		}
		//Attach
		if(flag){	
			t->next = NULL;
			pre->next = t;
			pre = t;
		}
	}
	pre->next = p1?p1:p2;
	return add;
}
void Print(node* p)
{
	node* t;
	p = p->next;
	t = p;
	while(t){
		cnt++;
		t = t->next;
	}
	printf("%d",cnt);
	while(p){
		printf(" %d %.1f",p->exp,p->coef);
		p = p->next;
	}
}
int main()
{
	node *p1 = new node;
	node *p2 = new node;
	p1->next = p2->next = NULL;
	
	int k1,k2;
	int exp;
	double coef;
	scanf("%d",&k1);
	for(int i=0;i<k1;i++){
		scanf("%d%lf",&exp,&coef);
		node *t = new node;
		t->exp = exp;
		t->coef = coef;
		Attach(p1,t);
	}
	scanf("%d",&k2);
	for(int i=0;i<k2;i++){
		scanf("%d%lf",&exp,&coef);
		node *t = new node;
		t->exp = exp;
		t->coef = coef;
		Attach(p2,t);
	}
	node* add = Add(p1,p2);
	Print(add);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,以下是关于多项式加法的解答: 多项式是一种数学表达式,其中包含了一个或多个变量的项,每个项包括了一个系数和指数。多项式的加法是将两个多项式相加,使得同一指数的项相加并合并同类项。 例如,考虑以下两个多项式: a = 3x^2 + 2x + 1 b = 5x^3 + 2x^2 - 3x + 4 它们的和为: a + b = 5x^3 + 5x^2 - x + 5 为了实现多项式加法,我们可以使用类似于整数加法的算法。首先,我们按照指数从高到低的顺序将两个多项式的项进行排列,并合并同类项。然后,将同一指数的项的系数相加,并创建一个新的多项式来表示它们的和。 以下是一个用 Python 实现多项式加法的示例代码: ```python def add_polynomials(a, b): result = {} for exponent, coefficient in a.items(): result[exponent] = coefficient + result.get(exponent, 0) for exponent, coefficient in b.items(): result[exponent] = coefficient + result.get(exponent, 0) return {k: v for k, v in sorted(result.items(), reverse=True)} ``` 在这个函数中,我们使用一个字典来表示多项式。字典的键是多项式中每个项的指数,而值是该项的系数。我们首先遍历多项式 a 的每个项,并将其系数添加到结果字典中相应指数的项中。然后,我们再遍历多项式 b 的每个项,并将其系数添加到结果字典中相应指数的项中。最后,我们将结果字典按照指数从高到低的顺序排序,并返回结果。 例如,我们可以使用以下代码来测试上面的函数: ```python a = {2: 3, 1: 2, 0: 1} b = {3: 5, 2: 2, 1: -3, 0: 4} print(add_polynomials(a, b)) # 输出:{3: 5, 2: 5, 1: -1, 0: 5} ``` 这个例子中,我们将多项式 a 和 b 传递给 `add_polynomials` 函数,并打印函数的返回值。函数返回的结果是一个字典,其中包含了相加后的多项式的各项系数。 希望这可以回答你的问题! ### 回答2: 我们考虑两个多项式P(x)和Q(x),并给予它们各自的次数a和b。那么,首先我们要确定它们的乘积,也就是P(x)乘以Q(x)。我们可以通过分配律将乘积展开,得到一个系数为c_i的新多项式R(x): P(x) * Q(x) = R(x) = c_0 + c_1x + c_2x^2 + ... + c_{a+b}x^{a+b} 其中,c_i表示x的i次项的系数。为了计算出这些系数,我们需要对所有次数小于或等于a+b的i进行求和。具体来说,我们可以使用下面这个公式: c_i = sum(j=0 to i) P(j) * Q(i-j) 也就是说,第i项的系数是将第一个多项式中次数小于或等于j的项和第二个多项式中次数等于i-j的项相乘,并且对所有j求和。我们可以使用循环来计算这些系数。 需要注意的是,由于两个非零多项式的乘积的次数至少为a+b,因此我们需要为求和循环的上界设置一个适当的值。具体来说,可以将循环的上界设置为a+b,这样就能保证所有的系数都会被计算。此外,如果某个系数为0,则可以将它省略掉,以减少计算量。 在实现时,还需要注意多项式乘法中的一些细节。例如,当某个多项式的系数为0时,我们可以假定它的所有次数都对应了一个系数为0的项。此外,我们需要考虑多项式乘法的精度,以避免出现浮点数误差。具体来说,可以使用一些特殊的技巧来避免浮点数误差,例如将系数表示为有理数,或者使用任意精度计算库。 总之,多项式乘法是非常基础的数学问题,也是很多算法和应用程序的核心部分。通过合理地选择算法和编写高效的代码,我们可以在计算多项式乘法时获得比较优秀的性能。 ### 回答3: 题意: 给定两个多项式 $A(x)$ 和 $B(x)$,请求出它们的乘积 $C(x)$ 思路: 多项式乘法非常简单,就是按照手算乘法的规则将每一项相乘然后相加。但是对于两个多项式相乘,需要循环枚举每一项相乘,最终将结果相加。如果直接按照手算乘法来做会有很多重复的计算,因此需要使用一些技巧来优化计算过程。下面给出两种常见的优化方法: 方法一:常规乘法过程 对于两个多项式 $A(x) = a_0 x^0 + a_1 x^1 + ... + a_n x^n$ 和 $B(x) = b_0 x^0 + b_1 x^1 + ... + b_m x^m$,它们的乘积可以表示为 $$C(x) = A(x) \cdot B(x) = c_0 x^0 + c_1 x^1 + ... + c_{n+m} x^{n+m}$$ 其中 $c_k$ 是 $A(x)$ 中所有次数为 $i$ 的项和 $B(x)$ 中所有次数为 $k-i$ 的项的乘积之和,即 $$c_k = \sum_{i=0}^{k} a_i b_{k-i}$$ 对于每一个 $k$,需要循环枚举 $i$ 的值,这样时间复杂度就是 $O(nm)$,无法通过本题。 方法二:多项式快速幂 快速幂是一种用来计算 $a^n$ 的算法,可以将计算次数从 $O(n)$ 优化到 $O(\log n)$,非常高效。对于两个多项式 $A(x)$ 和 $B(x)$,它们的乘积可以表示为 $$C(x) = A(x) \cdot B(x)$$ 令 $A(x) = A_0(x) + A_1(x) x^{\frac{n}{2}}, B(x) = B_0(x) + B_1(x) x^{\frac{n}{2}}$,其中 $n$ 是 $A(x)$ 和 $B(x)$ 最高次项次数加一并且是 $2$ 的幂次方,$A_0(x)$ 和 $B_0(x)$ 是 $A(x)$ 和 $B(x)$ 中次数不大于 $\frac{n}{2}$ 的项组成的多项式,$A_1(x)$ 和 $B_1(x)$ 是 $A(x)$ 和 $B(x)$ 中次数大于 $\frac{n}{2}$ 的项组成的多项式,即 $$A(x) = A_0(x) + x^{\frac{n}{2}} A_1(x)$$ $$B(x) = B_0(x) + x^{\frac{n}{2}} B_1(x)$$ 则有 $$C(x) = A(x) \cdot B(x) = A_0(x) B_0(x) + x^n A_1(x) B_1(x) + x^{\frac{n}{2}} (A_0(x) B_1(x) + A_1(x) B_0(x))$$ 我们可以首先递归计算以下三个多项式: $$C_0(x) = A_0(x) \cdot B_0(x)$$ $$C_1(x) = A_1(x) \cdot B_1(x)$$ $$C_2(x) = (A_0(x) + A_1(x)) \cdot (B_0(x) + B_1(x))$$ 然后将它们合并成最终结果,即 $$C(x) = C_0(x) + x^n C_1(x) + x^{\frac{n}{2}} (C_2(x) - C_0(x) - C_1(x))$$ 这样可以将时间复杂度优化到 $O(n \log n)$,可以通过本题。 AC CODE:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值