考研二战日记——第二天 高数第一章第二节:数列的极限

  • 昨天进行了一天的反思总结和复习开头,这一篇则是是对高数第一章第二节:数列的极限的总结原本一战的时候我对这一部分不怎么重视,感觉好像搞懂了函数的极限就OK了,但实际上,数列的极限和函数的极限还是有区别的,所以这一次我要把这一章重视起来。
    既然要讨论数列的极限,那必须先把数列给搞明白!

  • 数列是有定义域的有序排列起来的一组数,排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。

数列的函数理解:

①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。
③函数不一定有解析式,同样数列也并非都有通项公式
分类
(1)有穷数列和无穷数列:
项数有限的数列为“有穷数列”;项数无限的数列为“无穷数列”。
(2)对于正项数列:(数列的各项都是正数的为正项数列)
1)从第2项起,每一项都大于它的前一项的数列叫做递增数列;如:1,2,3,4,5,6,7;
2)从第2项起,每一项都小于它的前一项的数列叫做递减数列;如:8,7,6,5,4,3,2,1;
3)从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做摆动数列(摇摆数列);
(3)周期数列:各项呈周期性变化的数列叫做周期数列(如三角函数);
(4)常数数列:各项相等的数列叫做常数数列(如:2,2,2,2,2,2,2,2,2)。

等差数列

an=a1+(n-1)d
其中,n=1时 a1=S1;n≥2时 an=Sn-Sn-1。
an=kn+b(k,b为常数) 推导过程:an=dn+a1-d 令d=k,a1-d=b 则得到an=kn+b。
等差中项:由三个数a,A,b组成的等差数列堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmetic mean)。有关系:A=(a+b)÷2。
前n项和:Sn=n(a1+an)÷2=na1+n(n-1)d÷2,Sn=dn2÷2+n(a1-d÷2),S2n-1=(2n-1)an,S2n+1=(2n+1)an+1

等差数列性质

(1)任意两项am,an的关系为:an=am+(n-m)d,它可以看作等差数列广义的通项公式。
(2)从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N*。
(3)若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq。
(4)对任意的k∈N*,有Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差数列。

等比数列

一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列

等比中项

如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。
有关系: G^2=ab
注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G^2=ab 是a、G、b三数成等比数列的必要不充分条件。

等比通项公式

an=a1q^(n-1) (其中首项是a1 ,公比是q);
an=sn-s(n-1) (n≥2)。

等比前n项和

当q≠1时,等比数列的前n项和的公式
当q=1时,等比数列的前n项和的公式为: sn=na1;
前n项和与通项的关系: an=a1=s1(n=1) ;an=sn-s(n-1) (n≥2)。

等比数列性质

(1)若 m、n、p、q∈N*,且m+n=p+q,则 aman=apaq;
(2)在等比数列中,依次每 k项之和仍成等比数列。
(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1an=aka(n-k+1)
(4)任意两项 的关系为 ,an=am*q(n-m)
(5)在等比数列中,首项 a1与公比q都不为零。

好了,回顾了一下等差等比数列之后我们就要正是开始讲数列的极限了

数列的极限

对一个数列如果n无限增大,xn无限接近于一个常数a则我们称a为此数列的极限

数列的极限的性质

唯一性 若数列 收敛,则它只有一个极限 有界性 若数列 收敛,则 为有界数列,即存在正数 M,使得对一切正整数n有:|an|<=M
有界性:若数列 收敛,那么数列一定有界,无界一定发散,但数列有界不能判断数列一定收敛
保号性 若数列的极限a>0(或a<0)则an>0(或an<0) 保不等式性 若an>=bn则an的极限a>=bn的极限b ,如果an>=0,那么a>=0
迫敛性(夹逼) 若an<=bn<=cn,且an和cn的极限都是a,则bn的极限也是a
四则运算法则 若an和bn都有极限,则数列的四则运算可转化为极限的四则运算,注意除运算的0
单调有界定理 在实数系中,单调有界数列必有极限。
致密性定理 任何有界数列必有收敛的子列。且子数列极限相同

好了知识点梳理完了接下来去亲自做些例题吧,数学的学习始终离不开做题的练习

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 书香水墨 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读