下面这些都来自与dubbo官网,大家可以自行去看,自己添加了点东西好让自己理解的更深刻些
1、背景
单一应用架构
当网站流量很小时,只需一个应用,将所有功能都部署在一起,以减少部署节点和成本。此时,用于简化增删改查工作量的 数据访问框架(ORM) 是关键。
垂直应用架构
当访问量逐渐增大,单一应用增加机器带来的加速度越来越小,将应用拆成互不相干的几个应用,以提升效率。此时,用于加速前端页面开发的 Web框架(MVC) 是关键。
分布式服务架构
当垂直应用越来越多,应用之间交互不可避免,将核心业务抽取出来,作为独立的服务,逐渐形成稳定的服务中心,使前端应用能更快速的响应多变的市场需求。此时,用于提高业务复用及整合的分布式**服务框架(RPC)**是关键。
流动计算架构
当服务越来越多,容量的评估,小服务资源的浪费等问题逐渐显现,此时需增加一个调度中心基于访问压力实时管理集群容量,提高集群利用率。此时,用于提高机器利用率的**资源调度和治理中心(SOA)**是关键。
2、dubbo需要满足的需求
微服务整体服务图
在没有dubbo之前,也有很多方法来暴露引用远程方法,比如RMI(java的远程调用,但要保证两端都是java语言编写的程序)和Hessian,通过URL地址进行调配,通过F5等硬件进行负载均衡
(1)、当服务越来越多时,服务 URL 配置管理变得非常困难,F5 硬件负载均衡器的单点压力也越来越大。 此时需要一个服务注册中心,动态地注册和发现服务,使服务的位置透明。并通过在消费方获取服务提供方地址列表,实现软负载均衡和 Failover,降低对 F5 硬件负载均衡器的依赖,也能减少部分成本,可以认为就是现在的zookeeper 担当的角色。
(2)、当进一步发展,服务间依赖关系变得错踪复杂,甚至分不清哪个应用要在哪个应用之前启动,架构师都不能完整的描述应用的架构关系。 这时,需要自动画出应用间的依赖关系图,以帮助架构师理清理关系。
(3)、接着,服务的调用量越来越大,服务的容量问题就暴露出来,这个服务需要多少机器支撑?什么时候该加机器? 为了解决这些问题,第一步,要将服务现在每天的调用量,响应时间,都统计出来,作为容量规划的参考指标。其次,要可以动态调整权重,在线上,将某台机器的权重一直加大,并在加大的过程中记录响应时间的变化,直到响应时间到达阈值,记录此时的访问量,再以此访问量乘以机器数反推总容量。出现了dubbo-admin 来解决这个无问题
3、dubbo的架构
节点角色说明
节点 | 说明 | 代表 |
---|---|---|
Provider | 暴露服务的服务提供方 | 服务端集群程序(和container的区别在于这个是程序,下面是容器,如果想用容器中的数据必须通过这个程序) |
Consumer | 调用远程服务的服务消费方 | 调用某一微服务的客户端 |
Registry | 服务注册与发现的注册中心 | 相当于zookeeeper |
Monitor | 统计服务的调用次数和调用时间的监控中心 | … |
Container | 服务运行容器 | 某一服务端集群 |