解析Flink如何创建的窗口,和以聚合函数为例,窗口如何计算聚合函数
一、构建不同窗口的build类
这个是示例,
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<Tuple2<String, Integer>> input = env.fromElements(
Tuple2.of("key1", 1),
Tuple2.of("key1", 3),
Tuple2.of("key2", 2),
Tuple2.of("key2", 4)
);
1、全局窗口
下面是创建全局窗口的代码
AllWindowedStream<Tuple2<String, Integer>, TimeWindow> windowed = input.windowAll(TumblingProcessingTimeWindows.of(Time.seconds(5)));
@PublicEvolving
public <W extends Window> AllWindowedStream<T, W> windowAll(WindowAssigner<? super T, W> assigner) {
return new AllWindowedStream(this, assigner);
}
@Public
public class AllWindowedStream<T, W extends Window> {
private final KeyedStream<T, Byte> input;
private final WindowAssigner<? super T, W> windowAssigner;
private Trigger<? super T, ? super W> trigger;
private Evictor<? super T, ? super W> evictor;
private long allowedLateness = 0L;
private OutputTag<T> lateDataOutputTag;
@PublicEvolving
public AllWindowedStream(DataStream<T> input, WindowAssigner<? super T, W> windowAssigner) {
//这里设置input的KeySelector为null的对象
this.input = input.keyBy(new NullByteKeySelector());
this.windowAssigner = windowAssigner;
this.trigger = windowAssigner.getDefaultTrigger(input.getExecutionEnvironment());
}
}
AllWindowedStream
是对整个数据流应用窗口操作的抽象,而不进行键分组。换句话说,AllWindowedStream
是对全局数据流进行窗口操作。
使用场景:
- 当你不需要对数据流进行键分组,而是希望对整个数据流应用窗口操作时,使用
AllWindowedStream
。 - 适用于全局统计、全局聚合等场景。
2、创建按键分流后的窗口
下面是根据第一位字段当键分流,针对键分的流数据,分别创建窗口
KeyedStream<Tuple2<String, Integer>, String> keyed = input.keyBy(value -> value.f0);
WindowedStream<Tuple2<String, Integer>, String, TimeWindow> windowed = keyed.window(TumblingProcessingTimeWindows.of(Time.seconds(5)));
@PublicEvolving
public <W extends Window> WindowedStream<T, KEY, W> window(WindowAssigner<? super T, W> assigner) {
return new WindowedStream(this, assigner);
}
@Public
public class WindowedStream<T, K, W extends Window> {
private final KeyedStream<T, K> input;
//WindowOperatorBuilder 是 Flink 内部用于构建窗口操作符的工具类。它主要用于在内部构建和配置窗口操作符(WindowOperator),并不直接用于用户代码中。WindowOperatorBuilder 提供了一种灵活的方式来配置窗口操作符的各种细节,包括窗口分配器、窗口触发器、窗口合并器等。
private final WindowOperatorBuilder<T, K, W> builder;
@PublicEvolving
public WindowedStream(KeyedStream<T, K> input, WindowAssigner<? super T, W> windowAssigner) {
//这里只需要设置input,input的keyBy已经在前面设置了
this.input = input;
//通过input.getKeySelector()获取KeyedStream设置的函数
this.builder = new WindowOperatorBuilder(windowAssigner, windowAssigner.getDefaultTrigger(input.getExecutionEnvironment()), input.getExecutionConfig(), input.getType(), input.getKeySelector(), input.getKeyType());
}
//调用WindowedStream的trigger实际上调用的是WindowOperatorBuilder的trigger方法
@PublicEvolving
public WindowedStream<T, K, W> trigger(Trigger<? super T, ? super W> trigger) {
this.builder.trigger(trigger);
return this;
}
}
public class WindowOperatorBuilder<T, K, W extends Window> {
private static final String WINDOW_STATE_NAME = "window-contents";
private final ExecutionConfig config;
private final WindowAssigner<? super T, W> windowAssigner;
private final TypeInformation<T> inputType;
private final KeySelector<T, K> keySelector;
private final TypeInformation<K> keyType;
private Trigger<? super T, ? super W> trigger;
@Nullable
private Evictor<? super T, ? super W> evictor;
private long allowedLateness = 0L;
@Nullable
private OutputTag<T> lateDataOutputTag;
public WindowOperatorBuilder(WindowAssigner<? super T, W> windowAssigner, Trigger<? super T, ? super W> trigger, ExecutionConfig config, TypeInformation<T> inputType, KeySelector<T, K> keySelector, TypeInformation<K> keyType) {
this.windowAssigner = windowAssigner;
this.config = config;
this.inputType = inputType;
//把KeyedStream中的keySelector赋值到WindowOperatorBuilder的keySelector
this.keySelector = keySelector;
this.keyType = keyType;
this.trigger = trigger;
}
}
WindowedStream
是在对数据流进行键分组后,对每个键的子流应用窗口操作的抽象。也就是说,WindowedStream
是对每个键进行独立的窗口操作。
使用场景:
- 当你需要对数据流按键分组,并对每个键的子流应用窗口操作时,使用
WindowedStream
。 - 适用于需要对不同键进行独立统计和聚合的场景。
二、在使用窗口处理数据流时,不同窗口创建的都是窗口算子WindowOperator
这里以聚合函数为例,看不同的窗口类型创建的算子是什么。
1、聚合函数实现
// 定义聚合函数
AggregateFunction<Tuple2<String, Integer>, Tuple2<String, Integer>, Tuple2<String, Integer>> aggregateFunction =
new AggregateFunction<Tuple2<String, Integer>, Tuple2<String, Integer>, Tuple2<String, Integer>>() {
@Override
public Tuple2<String, Integer> createAccumulator() {
return new Tuple2<>("", 0);
}
@Override
public Tuple2<String, Integer> add(Tuple2<String, Integer> value, Tuple2<String, Integer> accumulator) {
return new Tuple2<>(value.f0, value.f1 + accumulator.f1);
}
@Override
public Tuple2<String, Integer> getResult(Tuple2<String, Integer> accumulator) {
return accumulator;
}
@Override
public Tuple2<String, Integer> merge(Tuple2<String, Integer> a, Tuple2<String, Integer> b) {
return new Tuple2<>(a.f0, a.f1 + b.f1);
}
};
//聚合函数接口
public interface AggregateFunction<IN, ACC, OUT> extends Function, Serializable {
ACC createAccumulator();
ACC add(IN var1, ACC var2);
OUT getResult(ACC var1);
ACC merge(ACC var1, ACC var2);
}
2、创建全局窗口(入参传的是NullByteKeySelector)
根据上面知道,此时
@Public
public class AllWindowedStream<T, W extends Window> {
@PublicEvolving
public AllWindowedStream(DataStream<T> input, WindowAssigner<? super T, W> windowAssigner) {
//这里设置input的KeySelector为null的对象
this.input = input.keyBy(new NullByteKeySelector());
this.windowAssigner = windowAssigner;
this.trigger = windowAssigner.getDefaultTrigger(input.getExecutionEnvironment());
}
@PublicEvolving
public <ACC, V, R> SingleOutputStreamOperator<R> aggregate(AggregateFunction<T, ACC, V> aggregateFunction, AllWindowFunction<V, R, W> windowFunction, TypeInformation<ACC> accumulatorType, TypeInformation<R> resultType) {
//根据AllWindowedStream的构造函数,知道此时this.input.getKeySelector()=new NullByteKeySelector
KeySelector<T, Byte> keySel = this.input.getKeySelector();
//省略干扰代码
AggregatingStateDescriptor<T, ACC, V> stateDesc = new AggregatingStateDescriptor("window-contents", aggregateFunction, accumulatorType.createSerializer(this.getExecutionEnvironment().getConfig()));
operator = new WindowOperator(this.windowAssigner, this.windowAssigner.getWindowSerializer(this.getExecutionEnvironment().getConfig()), keySel, this.input.getKeyType().createSerializer(this.getExecutionEnvironment().getConfig()), stateDesc, new InternalSingleValueAllWindowFunction(windowFunction), this.trigger, this.allowedLateness, this.lateDataOutputTag);
//省略干扰代码
return this.input.transform(opName, resultType, (OneInputStreamOperator)operator).forceNonParallel();
}
}
@PublicEvolving
public class AggregatingStateDescriptor<IN, ACC, OUT> extends StateDescriptor<AggregatingState<IN, OUT>, ACC> {
private final AggregateFunction<IN, ACC, OUT> aggFunction;
public AggregatingStateDescriptor(String name, AggregateFunction<IN, ACC, OUT> aggFunction, TypeSerializer<ACC> typeSerializer) {
super(name, typeSerializer, (Object)null);
this.aggFunction = (AggregateFunction)Preconditions.checkNotNull(aggFunction);
}
}
3、创建按键分流后的窗口(入参传的是KeyedStream的KeySelector)
public class WindowedStream<T, K, W extends Window> {
@PublicEvolving
public WindowedStream(KeyedStream<T, K> input, WindowAssigner<? super T, W> windowAssigner) {
this.input = input;
this.builder = new WindowOperatorBuilder(windowAssigner, windowAssigner.getDefaultTrigger(input.getExecutionEnvironment()), input.getExecutionConfig(), input.getType(), input.getKeySelector(), input.getKeyType());
}
public <ACC, V, R> SingleOutputStreamOperator<R> aggregate(AggregateFunction<T, ACC, V> aggregateFunction, WindowFunction<V, R, K, W> windowFunction, TypeInformation<ACC> accumulatorType, TypeInformation<R> resultType) {
//删除干扰代码
aggregateFunction = (AggregateFunction)this.input.getExecutionEnvironment().clean(aggregateFunction);
String opName = this.builder.generateOperatorName(aggregateFunction, windowFunction);
OneInputStreamOperator<T, R> operator = this.builder.aggregate(aggregateFunction, windowFunction, accumulatorType);
return this.input.transform(opName, resultType, operator);
}
}
通过上面我们知道builder指的是WindowOperatorBuilder
,并且构造函数入参中的keySelector实际上是keyedStream
的keySelector
public class WindowOperatorBuilder<T, K, W extends Window> {
public WindowOperatorBuilder(WindowAssigner<? super T, W> windowAssigner, Trigger<? super T, ? super W> trigger, ExecutionConfig config, TypeInformation<T> inputType, KeySelector<T, K> keySelector, TypeInformation<K> keyType) {
this.windowAssigner = windowAssigner;
this.config = config;
this.inputType = inputType;
//这个keySelector = keyedStream的keySelector
this.keySelector = keySelector;
this.keyType = keyType;
this.trigger = trigger;
}
public <ACC, V, R> WindowOperator<K, T, ?, R, W> aggregate(AggregateFunction<T, ACC, V> aggregateFunction, WindowFunction<V, R, K, W> windowFunction, TypeInformation<ACC> accumulatorType) {
//删除干扰代码
AggregatingStateDescriptor<T, ACC, V> stateDesc = new AggregatingStateDescriptor("window-contents", aggregateFunction, accumulatorType.createSerializer(this.config));
return this.buildWindowOperator(stateDesc, new InternalSingleValueWindowFunction(windowFunction));
}
private <ACC, R> WindowOperator<K, T, ACC, R, W> buildWindowOperator(StateDescriptor<? extends AppendingState<T, ACC>, ?> stateDesc, InternalWindowFunction<ACC, R, K, W> function) {
return new WindowOperator(this.windowAssigner, this.windowAssigner.getWindowSerializer(this.config), this.keySelector, this.keyType.createSerializer(this.config), stateDesc, function, this.trigger, this.allowedLateness, this.lateDataOutputTag);
}
}
}
两种窗口最后都是构建WindowOperator
,只是传的参数不一样,其中全局窗口的keySelector
是null
对象,按键建窗口的keySelector
是取的KeyedStream
的
3、WindowOperator
@Internal
public class WindowOperator<K, IN, ACC, OUT, W extends Window> extends AbstractUdfStreamOperator<OUT, InternalWindowFunction<ACC, OUT, K, W>> implements OneInputStreamOperator<IN, OUT>, Triggerable<K, W> {
private final KeySelector<IN, K> keySelector;
private transient InternalAppendingState<K, W, IN, ACC, ACC> windowState;
private final StateDescriptor<? extends AppendingState<IN, ACC>, ?> windowStateDescriptor;
public WindowOperator(WindowAssigner<? super IN, W> windowAssigner, TypeSerializer<W> windowSerializer, KeySelector<IN, K> keySelector, TypeSerializer<K> keySerializer, StateDescriptor<? extends AppendingState<IN, ACC>, ?> windowStateDescriptor, InternalWindowFunction<ACC, OUT, K, W> windowFunction, Trigger<? super IN, ? super W> trigger, long allowedLateness, OutputTag<IN> lateDataOutputTag) {
//删除干扰代码
this.windowStateDescriptor = windowStateDescriptor;
this.keySelector = (KeySelector)Preconditions.checkNotNull(keySelector);
}
public void open() throws Exception {
if (this.windowStateDescriptor != null) {
this.windowState = (InternalAppendingState)this.getOrCreateKeyedState(this.windowSerializer, this.windowStateDescriptor);
}
}
//数据到的执行方法
public void processElement(StreamRecord<IN> element) throws Exception {
//它遍历名为elementWindows的迭代器
Collection<W> elementWindows = this.windowAssigner.assignWindows(element.getValue(), element.getTimestamp(), this.windowAssignerContext);
//这里有判断窗口是否是像会话窗口那种需要动态合并窗口的逻辑,为了不干扰理解,这里删除了那一块代码逻辑,有兴趣的可以专门去看一下
//删除干扰代码
Iterator var12 = elementWindows.iterator();
label59:
while(true) {
Window window;
TriggerResult triggerResult;
while(true) {
//在每次迭代中,它会检查窗口是否已经过期(isWindowLate方法)
do {
if (!var12.hasNext()) {
break label59;
}
window = (Window)var12.next();
} while(this.isWindowLate(window));
//更新窗口的状态,将元素值添加到窗口状态中,并在触发器上下文中设置键和窗口
isSkippedElement = false;
this.windowState.setCurrentNamespace(window);
//add方法
this.windowState.add(element.getValue());
this.triggerContext.key = key;
this.triggerContext.window = window;
//调用onElement方法对元素进行处理并检查触发器结果
triggerResult = this.triggerContext.onElement(element);
if (!triggerResult.isFire()) {
//如果触发结果不需要触发(isFire() 返回 false),则跳出内部循环。
break;
}
//如果窗口内容不为空,它将发出窗口内容并终止内部循环
ACC contents = this.windowState.get();
if (contents != null) {
this.emitWindowContents(window, contents);
break;
}
}
//如果触发器结果要求清除窗口(isPurge()返回true),则会清除窗口状态
if (triggerResult.isPurge()) {
this.windowState.clear();
}
this.registerCleanupTimer(window);
}
}
//水位线判断逻辑
protected boolean isWindowLate(W window) {
return this.windowAssigner.isEventTime() && this.cleanupTime(window) <= this.internalTimerService.currentWatermark();
}
}
这里又发现了熟悉的接口,OneInputStreamOperator<IN, OUT>
,processElement
方法实际上是父类接口Input<IN>的processElement
方法
下面是WindowOperator
的类关系图,和Flink 1.14.*中flatMap,filter等基本转换函数源码中RichFlatMapFunction
和RichFilterFunction
一样的父类AbstractUdfStreamOperator
,接口新增了特性
通过这些,大家心里应该有数了,不管是FlatMap
还是Filter
还是窗口,都是基于这个类关系图扩展下来的