一、想象一下:AI 不再是孤岛,而是“宇宙级合体”
当你让 GPT 写一封英文邮件,让 Gemini 翻译成日文,最后请 Claude 来个语音合成,结果却发现——它们谁都不认识谁。
每家大模型都像在自家建了座摩天大楼,但没有一条通道连接彼此。
怎么办?
Google 推出的 A2A(Agent2Agent)协议,就是那条“高速公路”,让 Agent 之间可以跨越语言、平台、框架的鸿沟,说上话,干正事。
二、A2A 协议,用一句话说:
“让 AI 代理像网站一样,说统一的协议、走标准的路。”
A2A 不搞高高在上的复杂结构,它就像是 HTTP + JSON for AI Agents,用一套标准接口,让你家的 GPT 跟我家的 LLaMA 客客气气地互发请求、共享结果、甚至互相甩锅(任务失败通知 😅)。
三、构件拆解:A2A 的“组件宇宙”
名称 | 类比 | 说明 |
---|---|---|
Agent Card | Agent 的“身份证” | 告诉别人:我是谁、我能干啥、怎么调用我 |
Task | 工单系统 | 每次请求就是一个任务,从“已提交”到“已完成/失败” |
Message | 聊天记录 | 客户端与 Agent 之间的对话,每次发言都按 Part 拆开 |
Part | 内容胶囊 | 文本、文件、数据等,都封装成标准格式 |
Artifact | 最终成果 | Agent 干完活的成果,可以是文件、视频、代码等 |
举个例子:
你发一个翻译请求给翻译 Agent,它会记录成一个 Task,过程中还可能向你发 input-required
提问(比如确认语言风格),最后生成一个 PDF 报告作为 Artifact 返回。
四、不同通信模式,满足不同场景的“嘴脸”
4.1.轮询(Polling)
最朴素、最兼容的方式——“喂,你好了没?”
4.2. SSE(Server-Sent Events)
Agent 像弹幕一样实时推消息,“我现在开始翻译第一段了…搞定啦…”
4.3.Webhook(Push)
Agent 主动回电话,“兄弟,文件生成完了,快来拿!”
五、实战脑洞:A2A 能做什么?
5.1.教育场景
多语言问答:英语题让 GPT 回答,数学题交给 Mistral,最后用 LLaVA 图像生成讲解图。
5.2.企业办公
合同生成 Agent → 法务审校 Agent → 翻译 Agent → 归档 Agent
全过程无缝流转,就像 Slack Bot 开了挂。
5.3.游戏 AI
剧情生成 Agent 与 NPC 行为 Agent 协作,一起演出动态剧情。
5.4.工业自动化
图像识别 Agent 检测缺陷 → 维修 Agent 给出操作指导 → 记录 Agent 自动生成报告。
六、快速上手指南
想动手实践?A2A 提供了 Python + JS 的示例服务器和 SDK。推荐搭配使用:
只要你能写个简单的 HTTP 接口,就能接入这个“Agent 联盟”。
七、 总结:A2A 是 AI 世界的“普通话”
- 统一接口 → 万物互通
- 支持多模态 → 不止文字,还能传文件、图像、结构化数据
- 拓展性强 → 不局限大模型,也适用于轻量级 Agent
- 企业友好 → 流式通信 + 推送通知 + 安全认证
未来 AI 应用不会是一个“大模型吞天下”,而是 N 个 Agent 各司其职,协同作战,而 A2A 就是他们之间的“沟通魔法”。
八、最后的问题
你是否愿意让你的 AI 成为“宇宙一员”?
接入 A2A,它不再是独角戏,而是全明星阵容的一份子。