Tensorflow2.0学习笔记-鸢尾花分类

使用简单的神经网络对鸢尾花分类,输入的数据为鸢尾花的花蕊长度、花蕊宽度、花瓣长度、花瓣宽度进行训练。然后根据训练过后的权重和偏置进行测试,测试结果与鸢尾花的类别进行验证,查看准确率,具体代码如下:

import tensorflow as tf
from sklearn import datasets
from matplotlib import pyplot as plt
import numpy as np

# 导入数据,分别为输入特征和标签
x_data = datasets.load_iris().data
y_data = datasets.load_iris().target

# 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率)
# seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致)
np.random.seed(116)  # 使用相同的seed,保证输入特征和标签一一对应,注函数的参数只能使用一次
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)  # 设置全局随机种子,使

# 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行
x_train = x_data[:-30]
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]

x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)

# from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次32组数据,可分为4个组)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

# 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元
# 用tf.Variable()标记参数可训练
# 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed)
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))

lr = 0.1  # 学习率为0.1
train_loss_results = []  # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = []  # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据
epoch = 500  # 循环500轮
loss_all = 0  # 每轮分4个step,loss_all记录四个step生成的4个loss的和
# 训练部分
for epoch in range(epoch):  # 数据集级别的循环,每个epoch循环一次数据集
    for step, (x_train, y_train) in enumerate(train_db):  # batch级别的循环 ,每个step循环一个batch
        with tf.GradientTape() as tape:  # with结构记录梯度信息
            y = tf.matmul(x_train, w1) + b1  # 神经网络乘加运算
            y = tf.nn.softmax(y)  # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss),即每个类的概率符合概率分布
            y_ = tf.one_hot(y_train, depth=3)  # 将标签值转换为独热码格式,即得到我们的期望值
            loss = tf.reduce_mean(tf.square(y_ - y))  # 采用均方误差损失函数mse = mean(sum(y-out)^2)
            loss_all += loss.numpy()  # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确
            # 计算loss对各个参数的梯度
        grads = tape.gradient(loss, [w1, b1])

        # 实现梯度更新 w1 = w1 - lr * w1_grad    b = b - lr * b_grad
        w1.assign_sub(lr * grads[0])  # 参数w1自更新
        b1.assign_sub(lr * grads[1])  # 参数b自更新

    # 每个epoch,打印loss信息
    print("Epoch {}, loss: {}".format(epoch, loss_all/4))
    train_loss_results.append(loss_all / 4)  # 将4个step的loss求平均记录在此变量中
    loss_all = 0  # loss_all归零,为记录下一个epoch的loss做准备

    # 测试部分
    # total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0
    total_correct, total_number = 0, 0
    for x_test, y_test in test_db:
        # 使用更新后的参数进行预测
        y = tf.matmul(x_test, w1) + b1
        y = tf.nn.softmax(y)
        pred = tf.argmax(y, axis=1)  # 返回y中最大值的索引,即预测的分类
        # 将pred转换为y_test的数据类型
        pred = tf.cast(pred, dtype=y_test.dtype)
        # 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型
        correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)
        # 将每个batch的correct数加起来
        correct = tf.reduce_sum(correct)
        # 将所有batch中的correct数加起来
        total_correct += int(correct)
        # total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数
        total_number += x_test.shape[0]
    # 总的准确率等于total_correct/total_number
    acc = total_correct / total_number
    test_acc.append(acc)
    print("Test_acc:", acc)
    print("--------------------------")

# 绘制 loss 曲线
plt.title('Loss Function Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Loss')  # y轴变量名称
plt.plot(train_loss_results, label="$Loss$")  # 逐点画出trian_loss_results值并连线,连线图标是Loss
plt.legend()  # 画出曲线图标
plt.show()  # 画出图像

# 绘制 Accuracy 曲线
plt.title('Acc Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Acc')  # y轴变量名称
plt.plot(test_acc, label="$Accuracy$")  # 逐点画出test_acc值并连线,连线图标是Accuracy
plt.legend()
plt.show()

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
好的,我会尽力回答你的问题。对于您的问题,我理解您想问我如何调用U-NET模型,以下是我给出的回答。 首先,U-NET模型是一个用于图像分割的深度学习模型,它使用卷积神经网络来学习图像中不同区域的特征,并将它们分割成不同的类别。在TensorFlow 2.0中,我们可以使用tf.keras API来实现U-NET模型。 以下是一个简单的U-NET模型的实现代码: ```python import tensorflow as tf from tensorflow.keras.layers import * def conv_block(inputs, filters, kernel_size=(3, 3), activation='relu', padding='same'): x = Conv2D(filters, kernel_size, activation=activation, padding=padding)(inputs) x = BatchNormalization()(x) x = Conv2D(filters, kernel_size, activation=activation, padding=padding)(x) x = BatchNormalization()(x) return x def unet(input_shape=(256, 256, 3)): inputs = Input(shape=input_shape) c1 = conv_block(inputs, 64) p1 = MaxPooling2D((2, 2))(c1) c2 = conv_block(p1, 128) p2 = MaxPooling2D((2, 2))(c2) c3 = conv_block(p2, 256) p3 = MaxPooling2D((2, 2))(c3) c4 = conv_block(p3, 512) p4 = MaxPooling2D((2, 2))(c4) c5 = conv_block(p4, 1024) u6 = Conv2DTranspose(512, (2, 2), strides=(2, 2), padding='same')(c5) u6 = concatenate([u6, c4]) c6 = conv_block(u6, 512) u7 = Conv2DTranspose(256, (2, 2), strides=(2, 2), padding='same')(c6) u7 = concatenate([u7, c3]) c7 = conv_block(u7, 256) u8 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(c7) u8 = concatenate([u8, c2]) c8 = conv_block(u8, 128) u9 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(c8) u9 = concatenate([u9, c1]) c9 = conv_block(u9, 64) outputs = Conv2D(1, (1, 1), activation='sigmoid')(c9) model = tf.keras.Model(inputs=[inputs], outputs=[outputs]) return model ``` 在这个实现中,我们使用了Conv2D、BatchNormalization、MaxPooling2D和Conv2DTranspose等层来构建U-NET模型。我们还定义了一个conv_block函数来简化代码。 使用这个实现代码,我们可以通过以下方式调用U-NET模型: ```python model = unet() ``` 这将返回一个U-NET模型的实例,我们可以使用该实例来进行训练和预测。 希望这个回答对您有所帮助。如果您还有其他问题,请随时问我。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值