太原理工大学学生校园邮箱登陆方法

太原理工大学学生邮箱登陆

说实话我觉得包括我在内的大多数都没用过这个,所以大致说一下打开方法。
首先,打开学校主页,然后煞有介事的看看学校的新闻
太原理工大学主页
然后开心的发现好像要求教职工返岗??哈哈哈哈我们终于离开学不远了!!【这不是重点好吗!!】
好了,然后就认真的划到最下面
然后就看到了可爱的校园邮箱
在这里插入图片描述
点进去之后是这个界面在这里插入图片描述

首先,把教工域改成学生域,然后账号密码就是你连接校园网的账号(名字全拼+学号后4位)密码(那六位数

好了,如果你点登陆就能直接进去的话恭喜你,下面的配置邮箱步骤不用看了。但是我不承认只有我一个人登不进去,一定有人陪我因为什么证书原因,然后进不去的!

然后我放弃挣扎,直接打开电脑的邮件客户端自己配置,配置说明主要是参考这个界面下面的那个文件,我把要点说一下:

以客户端方式登录时,收件服务器:imap.tyut.edu.cn或pop.tyut.edu.cn ,发件服务器:smtp.tyut.edu.cn。为了使客户端软件接收邮件与服务器端一致,用户配置客户端时,强烈建议选择IMAP方式。

这里附一下这个文件的连接,有兴趣的同学可以去看

好了,然后我们就可以开始配置邮箱
首先,打开你电脑或者手机上面任何邮箱的客户端,我这里使用的是mac自带的客户端
左上角添加账户在这里插入图片描述

在这里插入图片描述

然后点击最下面的其他种类的账户

在这里插入图片描述

之后输入你的地址和密码,涂红的部分就是名字全拼+学号后4位
点击登陆
在这里插入图片描述

完成接下来的配置,填写收件服务器和发件服务器,确认账户类型是IMAP
然后会有各种验证什么的,一律通过,然后输入电脑的管理员密码就ok了

然后你就发现自己终于登上了自个儿学校的教育邮箱!!!

### 伺服电机参数辨识递推最小二乘算法实现 #### 算法概述 递推最小二乘(Recursive Least Squares, RLS)是一种动态参数辨识,能够在有限的数据样本基础上逐步更新系统的参数估计值。对于伺服电机而言,其电气参数如定子电阻、电感以及磁链等会随着温度变化而发生漂移,这直接影响到控制精度和系统稳定性。因此,利用RLS可以实现实时在线参数辨识RLS的核心思想在于通过不断引入新测量数据并调整权重矩阵来优化参数估计过程,同时保持计算复杂度较低以便适应实时应用场景的需求[^2]。 #### 数学模型构建 假设伺服电机的动力学行为可以用如下离散时间状态空间示: \[ y(k) = \theta^T \phi(k) + v(k) \] 其中: - \( y(k) \): 输出变量,在本案例中可能是电流反馈信号; - \( \theta \): 待估参数向量,包含待求解的物理量比如电阻\(R_s\)、互感\(L_d,L_q\)等; - \( \phi(k) \): 输入特征向量,由电压指令和其他可观测输入组成; - \( v(k) \): 测量噪声; 具体来说,针对永磁同步电机(PMSM),可定义如下形的状态方程用于描述dq轴电流关系: \[ i_{d}(k+1)=a_0 i_{d}(k)+b_0 u_{d}(k)-c_0 w_m k_e sin(\psi_f ) \] \[ i_{q}(k+1)=a_1 i_{q}(k)+b_1 u_{q}(k)+c_1 w_m k_e cos(\psi_f ) \] 这里涉及的具体系数可以根据实际电路拓扑结构进一步展开得到相应的[^4]。 #### RLS核心公 给定初始条件后,每次迭代按照以下步骤执行: 初始化阶段设定初值K(0), P(0): \[ K(0)=0,\quad P(0)=pI \] 随后每一步依据最新采样点更新预测误差e(k)及其协方差阵P(k),进而修正增益项K(k)直至收敛至稳定状态下的最终估算结果θ̂ (k) : \[ e(k) = y(k) - \hat{y}(k|\theta^{old}) \] \[ K(k) = P(k-1)\phi(k)[1+\phi^T(k)P(k-1)\phi(k)]^{-1} \] \[ \hat{\theta}(k) = \hat{\theta}(k-1)+K(k)e(k) \] \[ P(k)=[I-K(k)\phi^T(k)]P(k-1) \] 上述流程即构成了完整的RLS运算逻辑框架[^3]。 #### MATLAB代码示例 以下是基于MATLAB环境编写的一个简单版本RLS算法演示脚本供参考学习之用: ```matlab % 初始化部分 N= length(y); % 数据长度 n_param=length(theta_init); P = eye(n_param)*1e6; Theta_hat=zeros(N,n_param); for t=1:N phi_t=Phi(t,:).'; e=y(t)-(phi_t.')*Theta_hat(t-1,:); K=P*(phi_t)/((phi_t.')*P*(phi_t)+lambda); Theta_hat(t,:)=(Theta_hat(t-1,:).')+... ((K.*e)'); P=((eye(size(K))-K*(phi_t.'))*P)/lambda; end ``` 注意这里的`lambda`通常设置接近但小于1用来充当遗忘因子的作用以削弱旧数据的影响强度[^2]。 问题
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值