3.5 设有n种不同面值的硬币,第i种硬币的币值是vk(其中v1=1),重量是wi,i=1,2……n,且现在购买某些总价值为y的商品,需要用这些硬币付款,如果每种钱币使用的个数不限,那么如何选择付款的方法是的付出钱币的总重量最轻?
问题的实例:
V1=1, v2=4 ,v3=6 ,v4=8 ,
w1=1,w2=2,w3=4,w4=6
y=12
// Money.cpp : 定义控制台应用程序的入口点。
//
#include<iostream>
using namespace std;
#define MAX_NUM 20
int main()
{
int weight[MAX_NUM] = { 0,1,2,4,6 };
int value[MAX_NUM] = { 0,1,4,6,8 };
int y = 12; //凑出12元钱
int n = 5; //有5种硬币
int F[MAX_NUM][MAX_NUM] = { 0 };
int t[MAX_NUM][MAX_NUM] = { 0 };
int i, j;
//初始化
for (int j = 1; j <= y; j++)
{
F[1][j] = j*weight[1];
t[1][j] = 1;
}
//迭代更新
for (int i = 2; i <= n; i++)
{
for (int j = 1; j <= y; j++)
{
F[i][j] = F[i - 1][j];
t[i][j] = t[i - 1][j];
if (F[i][j - value[i]] + weight[i] <= F[i - 1][j])
{
F[i][j] = F[i][j] - value[i]] + weight[i];
t[i][j] = i;
}
}
}
printf("钱币的总重量为:%d", F[5][12]);
system("pause");
}