1几何级数敛散性的讨论。
- 当a等于零的时候。级数一定是收敛。
- 当q的绝对值大于一的时候。级数一定是发散。
- 当q的绝对值小于一的时候,级数一定收敛。
- 当q的绝对值等于负一。那么这个级数的部分和数列。是?偶数项都是零。但奇数项都是a。根据那个数列与子数列收敛的关系。可知该数列一定发散。
- 当那个q等于一的时候,无穷个a+和一定是发散的。
2利用定义判断级数敛散性的步骤。
- 第一写出这个级数的部分和数列。
- 求这个部分和数列的通项。
- 第二求这个部分和数列的极限。
3一些基本的数学思想。
- 见到了一连串的数相加要想到等差数列求和或者等比数列求和相当数列求和。
- 见到了两个乘积的形式,要把他们拆分。
- 见到根号的形式有理化。
基本性质。
- 收敛级数相加可以拆开。
- 在收敛级数中任意加括号所得的积数仍然是收敛,并且其收敛的和不改变。
- 如果加括号所得的级数是发散的,那么原级数也是发散的。
- 级数收敛一般项趋近于零。如果一般像不趋近于零,那么级数一定发散。
判断正向级数收敛或者发散。
- 第一个是利用充要条件就是它的部分和数列有极限。
- 第二个是利用比较审敛法,就是对启通项进行比较。如果它的通项大于一个发散的技术, 那么它就是发散的。如果他的通项小于一个收敛的技术,那么他就是收敛的的。
- 然后是比较审敛法的极限形式。比较他们通向找他的等价无穷小。寻找一个与他通向等价的。如果比值为极限或者比值为0:值为常数进行来判断。
- 接着就是比值审敛法。如果它的通项的比值小于一,说明是收敛大于一,说明是发散。
- 然后是根据十连法开根号的n次方。如果结果大于一,说明是发散小于一,说明是收敛等于一无法确定。
- 然后是特殊级数的收敛性,P级数的收敛性。如果p小于一的时候是发散,等于一的时候发散大于一的时候也是发散。
- 在这里要熟练掌握极限的以及等价无穷小的相关知识。
一般项级数。
- 条件熟练是原级数收敛,但是加了绝对值之后发散。
- 绝对收敛,是加了绝对值之后收敛。
交错级数。
- 莱布尼兹判别法如果他的an是单调递减并且极限是零的嘛,它就是收敛。
判断级数收敛性的过程。
- 先判断一般项是否趋近于零。
- 然后判断是正向级数还是一般项级数。
- 正向级数按照正向计数四种判别方法进行判断。
- 一般项级数先判断是绝对还是条件
- 然后熟练使用莱布尼兹法则一定级数的各种性质。
- 比如说收敛加收敛等于熟练熟练加发散等于发散。
- 然后绝对收敛,加条件收敛等于条件手链。