前言:
- hashmap默认容量大小是16,可以自定义大小。默认为2的幂次方。位运算机制效率远大于求余计算。同时只有为2的幂次才能满足求于和位运算得到的结果一样。
hashmap默认DEFAULT_LOAD_FACTOR为0.75,根据空间和时间的因数情况下选取的0.75
hashmap在jdk1.8中转化为红黑树的条件链表长度为8的时候,且数组长度为64(不为64时候进行扩容,扩容可能将链表进行拆分)
hashmap转化为红黑树采用泊松分布的概率学统计,冲突达到8的时候的概率是很低,因此是选择8
hashmap中的resize()方法为扩充源码:
扩充为旧数组大小*2,所以n 的二进制扩容后就是在原来的基础上向左移动了 1为 也就是说 扩容后的 2n-1 的二进制有效位比原来的多一个1 (如:原来n-1的二进制为1111,扩容后则是11111)。所以与相同的hash与计算后,index要么在原来的位置 或 原来位置+原来的容量值
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table; //当前table
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold; //当前阈值 默认16*0.75 = 12
int newCap, newThr = 0;
if (oldCap > 0) {
// 超过最大值就不再扩充了
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 计算新的容量和新的临界值 分别左移 1 位
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; //新的边界值= 旧的边界值 * 2
} else if (oldThr > 0) //map创建后第一次扩容,老阈值赋值给新的数组长度
//oldThr = threshold = this.threshold = tableSizeFor(initialCapacity);
//初始化时计算的这个值就等于容量,并不是容量 * 0.75
newCap = oldThr;
else { // 直接使用默认值,调用无参构造, oldThr 为0 ,设置默认的容量和阈值
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 计算新的resize最大上限
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
// 根据扩容后的参数,创建新的数组并赋值
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
// 遍历hash表中的每一个桶,重新计算桶中元素的新位置
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
// 没有下一个引用,说明只有一个键值对,直接插入
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
// 红黑处理逻辑,调用split()把树拆分开
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else {
// 链表结构处理逻辑
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
//判断扩容后的位置是在原来位置还是需要+旧数组容量
// (e.hash & oldCap) = 0 为true ,e这个节点在resize后不需要移动位置
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
// 原索引+oldCap
} else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
// 原索引放到bucket里
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
// 原索引+oldCap放到bucket里
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab; //返回新的table
}
split() 方法说明, ((TreeNode<K,V>)e).split(this, newTab, j, oldCap)
/**
* map 需要扩容的hashmap
* tab 新创建的数组
* index 旧数组的索引
* bit 就数组的容量
*/
final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
//做个赋值,因为这里是((TreeNode<K,V>)e)这个对象调用split()方法,所以this就是指(TreeNode<K,V>)e对象,所以才能类型对应赋值
TreeNode<K,V> b = this;
//设置低位首节点和低位尾节点
TreeNode<K,V> loHead = null, loTail = null;
//设置高位首节点和高位尾节点
TreeNode<K,V> hiHead = null, hiTail = null;
//定义两个变量lc和hc,初始值为0,后面比较要用,他们的大小决定了红黑树是否要转回链表
int lc = 0, hc = 0;
//这个for循环就是对从e节点开始对整个红黑树做遍历
for (TreeNode<K,V> e = b, next; e != null; e = next) {
//取e的下一节点赋值给next遍历
next = (TreeNode<K,V>)e.next;
//取好e的下一节点后,把它赋值为空,方便GC回收
e.next = null;
//以下的操作就是做个按位与运算,按照结果拉出两条链表,具体的操作可以参考这篇博客@2
if ((e.hash & bit) == 0) {
if ((e.prev = loTail) == null)
loHead = e;
else
loTail.next = e;
loTail = e;
//做个计数,看下拉出低位链表下会有几个元素
++lc;
}
else {
if ((e.prev = hiTail) == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
//做个计数,看下拉出高位链表下会有几个元素
++hc;
}
}
//如果低位链表首节点不为null,说明有这个链表存在
if (loHead != null) {
//如果链表下的元素小于等于6
if (lc <= UNTREEIFY_THRESHOLD)
//那就从红黑树转链表了,低位链表,迁移到新数组中下标不变,还是等于原数组到下标
tab[index] = loHead.untreeify(map);
else {
//低位链表,迁移到新数组中下标不变,还是等于原数组到下标,把低位链表整个拉到这个下标下,做个赋值
tab[index] = loHead;
//如果高位首节点不为空,说明原来的红黑树已经被拆分成两个链表了
if (hiHead != null)
//那么就需要构建新的红黑树了
loHead.treeify(tab);
}
}
//如果高位链表首节点不为null,说明有这个链表存在
if (hiHead != null) {
//如果链表下的元素小于等于6
if (hc <= UNTREEIFY_THRESHOLD)
//那就从红黑树转链表了,高位链表,迁移到新数组中的下标=【旧数组+旧数组长度】
tab[index + bit] = hiHead.untreeify(map);
else {
//高位链表,迁移到新数组中的下标=【旧数组+旧数组长度】,把高位链表整个拉到这个新下标下,做赋值
tab[index + bit] = hiHead;
如果低位首节点不为空,说明原来的红黑树已经被拆分成两个链表了
if (loHead != null)
//那么就需要构建新的红黑树了
hiHead.treeify(tab);
}
}
}