代码随想录刷题day46 139.单词拆分;多重背包;背包问题总结

代码随想录刷题day46 139.单词拆分;多重背包;背包问题总结

单词拆分这个看题解能看懂,但是自己确实想不到,也是对STL不熟悉。

主要是背包问题的一个总结。

139.单词拆分

139. 单词拆分 - 力扣(Leetcode)

由完全背包转化来的题目。感觉重点其实是STL的使用。

顺便复习一下回溯的写法。

思路

回溯算法:分割回文串 (opens new window):是枚举分割后的所有子串,判断是否回文。

本道是枚举分割所有字符串,判断是否在字典里出现过。

那么这里我也给出回溯法C++代码:

class Solution {
private:
    bool backtracking (const string& s, const unordered_set<string>& wordSet, int startIndex) {
        if (startIndex >= s.size()) {
            return true;
        }
        for (int i = startIndex; i < s.size(); i++) {
            string word = s.substr(startIndex, i - startIndex + 1);
            if (wordSet.find(word) != wordSet.end() && backtracking(s, wordSet, i + 1)) {
                return true;
            }
        }
        return false;
    }
public:
    bool wordBreak(string s, vector<string>& wordDict) {
        unordered_set<string> wordSet(wordDict.begin(), wordDict.end());
        return backtracking(s, wordSet, 0);
    }
};
  • 时间复杂度:O(2^n),因为每一个单词都有两个状态,切割和不切割
  • 空间复杂度:O(n),算法递归系统调用栈的空间

那么以上代码很明显要超时了,超时的数据如下:

"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaab"
["a","aa","aaa","aaaa","aaaaa","aaaaaa","aaaaaaa","aaaaaaaa","aaaaaaaaa","aaaaaaaaaa"]

递归的过程中有很多重复计算,可以使用数组保存一下递归过程中计算的结果。

这个叫做记忆化递归,这种方法我们之前已经提过很多次了。

使用memory数组保存每次计算的以startIndex起始的计算结果,如果memory[startIndex]里已经被赋值了,直接用memory[startIndex]的结果。

C++代码如下:

class Solution {
private:
    bool backtracking (const string& s,
            const unordered_set<string>& wordSet,
            vector<bool>& memory,
            int startIndex) {
        if (startIndex >= s.size()) {
            return true;
        }
        // 如果memory[startIndex]不是初始值了,直接使用memory[startIndex]的结果
        if (!memory[startIndex]) return memory[startIndex];
        for (int i = startIndex; i < s.size(); i++) {
            string word = s.substr(startIndex, i - startIndex + 1);
            if (wordSet.find(word) != wordSet.end() && backtracking(s, wordSet, memory, i + 1)) {
                return true;
            }
        }
        memory[startIndex] = false; // 记录以startIndex开始的子串是不可以被拆分的
        return false;
    }
public:
    bool wordBreak(string s, vector<string>& wordDict) {
        unordered_set<string> wordSet(wordDict.begin(), wordDict.end());
        vector<bool> memory(s.size(), 1); // -1 表示初始化状态
        return backtracking(s, wordSet, memory, 0);
    }
};

这个时间复杂度其实也是:O(2^n)。只不过对于上面那个超时测试用例优化效果特别明显。

背包问题

单词就是物品,字符串s就是背包,单词能否组成字符串s,就是问物品能不能把背包装满。

拆分时可以重复使用字典中的单词,说明就是一个完全背包!

动规五部曲分析如下:

  1. 确定dp数组以及下标的含义

dp[i] : 字符串长度为i的话,dp[i]为true,表示可以拆分为一个或多个在字典中出现的单词

  1. 确定递推公式

如果确定dp[j] 是true,且 [j, i] 这个区间的子串出现在字典里,那么dp[i]一定是true。(j < i )。

所以递推公式是 if([j, i] 这个区间的子串出现在字典里 && dp[j]是true) 那么 dp[i] = true。

  1. dp数组如何初始化

从递归公式中可以看出,dp[i] 的状态依靠 dp[j]是否为true,那么dp[0]就是递归的根基,dp[0]一定要为true,否则递归下去后面都都是false了。

那么dp[0]有没有意义呢?

dp[0]表示如果字符串为空的话,说明出现在字典里。

但题目中说了“给定一个非空字符串 s” 所以测试数据中不会出现i为0的情况,那么dp[0]初始为true完全就是为了推导公式。

下标非0的dp[i]初始化为false,只要没有被覆盖说明都是不可拆分为一个或多个在字典中出现的单词。

  1. 确定遍历顺序

题目中说是拆分为一个或多个在字典中出现的单词,所以这是完全背包。

还要讨论两层for循环的前后循序。

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品

本题最终要求的是是否都出现过,所以对出现单词集合里的元素是组合还是排列,并不在意!

那么本题使用求排列的方式,还是求组合的方式都可以

即:外层for循环遍历物品,内层for遍历背包 或者 外层for遍历背包,内层for循环遍历物品 都是可以的。

但本题还有特殊性,因为是要求子串,最好是遍历背包放在外循环,将遍历物品放在内循环。

如果要是外层for循环遍历物品,内层for遍历背包,就需要把所有的子串都预先放在一个容器里。

所以最终我选择的遍历顺序为:遍历背包放在外循环,将遍历物品放在内循环。内循环从前到后

  1. 举例推导dp[i]

以输入: s = “leetcode”, wordDict = [“leet”, “code”]为例,dp状态如图:

在这里插入图片描述

dp[s.size()]就是最终结果。

动规五部曲分析完毕,C++代码如下:

class Solution {
public:
    bool wordBreak(string s, vector<string>& wordDict) {
        unordered_set<string> wordSet(wordDict.begin(), wordDict.end());
        vector<bool> dp(s.size() + 1, false);
        dp[0] = true;
        for (int i = 1; i <= s.size(); i++) {   // 遍历背包
            for (int j = 0; j < i; j++) {       // 遍历物品
                string word = s.substr(j, i - j); //substr(起始位置,截取的个数)
                if (wordSet.find(word) != wordSet.end() && dp[j]) {
                    dp[i] = true;
                }
            }
        }
        return dp[s.size()];
    }
};
  • 时间复杂度:O(n^3),因为substr返回子串的副本是O(n)的复杂度(这里的n是substring的长度)
  • 空间复杂度:O(n)

总结

稍加分析,便可知道本题是完全背包,而且是求能否组成背包,所以遍历顺序理论上来讲 两层for循环谁先谁后都可以!

但因为分割子串的特殊性,遍历背包放在外循环,将遍历物品放在内循环更方便一些。

本题其实递推公式都不是重点,遍历顺序才是重点。

动态规划:关于多重背包

以为挺难的,结果发现还是挺tricky的。

有N种物品和一个容量为V 的背包。第i种物品最多有Mi件可用,每件耗费的空间是Ci ,价值是Wi 。求解将哪些物品装入背包可使这些物品的耗费的空间 总和不超过背包容量,且价值总和最大。

多重背包和01背包是非常像的, 为什么和01背包像呢?

每件物品最多有Mi件可用,把Mi件摊开,其实就是一个01背包问题了。

例如:

背包最大重量为10。

物品为:

重量价值数量
物品01152
物品13203
物品24302

问背包能背的物品最大价值是多少?

和如下情况有区别么?

重量价值数量
物品01151
物品01151
物品13201
物品13201
物品13201
物品24301
物品24301

毫无区别,这就转成了一个01背包问题了,且每个物品只用一次。

这种方式来实现多重背包的代码如下:

void test_multi_pack() {
    vector<int> weight = {1, 3, 4};
    vector<int> value = {15, 20, 30};
    vector<int> nums = {2, 3, 2};
    int bagWeight = 10;
    for (int i = 0; i < nums.size(); i++) {
        while (nums[i] > 1) { // nums[i]保留到1,把其他物品都展开
            weight.push_back(weight[i]);
            value.push_back(value[i]);
            nums[i]--;
        }
    }

    vector<int> dp(bagWeight + 1, 0);
    for(int i = 0; i < weight.size(); i++) { // 遍历物品
        for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
            dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
        }
        for (int j = 0; j <= bagWeight; j++) {
            cout << dp[j] << " ";
        }
        cout << endl;
    }
    cout << dp[bagWeight] << endl;

}
int main() {
    test_multi_pack();
}
  • 时间复杂度:O(m × n × k),m:物品种类个数,n背包容量,k单类物品数量

也有另一种实现方式,就是把每种商品遍历的个数放在01背包里面在遍历一遍。

代码如下:(详看注释)

void test_multi_pack() {
    vector<int> weight = {1, 3, 4};
    vector<int> value = {15, 20, 30};
    vector<int> nums = {2, 3, 2};
    int bagWeight = 10;
    vector<int> dp(bagWeight + 1, 0);


    for(int i = 0; i < weight.size(); i++) { // 遍历物品
        for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
            // 以上为01背包,然后加一个遍历个数
            for (int k = 1; k <= nums[i] && (j - k * weight[i]) >= 0; k++) { // 遍历个数
                dp[j] = max(dp[j], dp[j - k * weight[i]] + k * value[i]);
            }
        }
        // 打印一下dp数组
        for (int j = 0; j <= bagWeight; j++) {
            cout << dp[j] << " ";
        }
        cout << endl;
    }
    cout << dp[bagWeight] << endl;
}
int main() {
    test_multi_pack();
}
  • 时间复杂度:O(m × n × k),m:物品种类个数,n背包容量,k单类物品数量

从代码里可以看出是01背包里面在加一个for循环遍历一个每种商品的数量。 和01背包还是如出一辙的。

当然还有那种二进制优化的方法,其实就是把每种物品的数量,打包成一个个独立的包。

背包问题总结

具体还是看代码随想录的总结,结合题目复习。代码随想录 (programmercarl.com)

动态规矩的五个步骤:

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

背包递推公式

问能否能装满背包(或者最多装多少):dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);

问装满背包有几种方法:dp[j] += dp[j - nums[i]];

问背包装满最大价值:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

问装满背包所有物品的最小个数:dp[j] = min(dp[j - coins[i]] + 1, dp[j])。

遍历顺序

01背包

二维dp数组01背包先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。

一维dp数组01背包只能先遍历物品再遍历背包容量,且第二层for循环是从大到小遍历。

一维dp数组的背包在遍历顺序上和二维dp数组实现的01背包其实是有很大差异的,大家需要注意!

完全背包

纯完全背包的一维dp数组实现,先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。

但是仅仅是纯完全背包的遍历顺序是这样的,题目稍有变化,两个for循环的先后顺序就不一样了。

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品

如果求最小数,那么两层for循环的先后顺序就无所谓了。

对于背包问题,其实递推公式算是容易的,难是难在遍历顺序上,如果把遍历顺序搞透,才算是真正理解了

总结

这篇背包问题总结篇是对背包问题的高度概括,讲最关键的两部:递推公式和遍历顺序,结合力扣上的题目全都抽象出来了

背包问题总结:

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值