【linux】移动硬盘挂载 光盘挂载 与卸载 移动硬盘挂载【ntfs文件系统】要求:linux系统中有ntfs-3g工具,如果没有需要下载ntfs的tfz包并安装,安装命令如下:tar -zxvf ntfs-3g-***.tar.gzcd ntfs-3g-***./configuremakemake install
linux PATH恢复 及 PATH永久修改 linux下环境变量PATH设置错误的补救export PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin如果需要anaconda,还需要加上anaconda3/bin所在的路径
【论文】交叉引用后的参考文献标号右边有空格 例如:某人提出了新型装置[1](手动空格),该装置很好用解决办法:切换域代码,REF _Ref72783751 \r \h改为{REF _Ref72783751 \r #”[0]” }更新域
【树莓派安装tensorflow2 64位系统】【暂定终极版】 1.首先安装64位系统树莓派安装64位系统2.安装python3.7linux 安装python3.安装tensorflow2A. 注意pip3 install时首先升级pip3,pip3 upgrade --upgrade pipB. 然后pip3 安装时,前面要加sudotensorflow arm版
ubuntu 18.04 linux虚拟机 无法上网 分辨率不合适 剪贴板共享等问题 1.分辨率不合适:在右上角设置 -> displays -> resolution -> 1360 x 768 -> 确定永久改动2.剪贴板共享问题:开启ubuntu虚拟机 -> 虚拟机 -> 安装VMware tools -> 按照提示用tar -zxvf (.gz) -C -> 运行指定程序即可3.无法上网问题:Ubuntu18.04的网络配置...
ARM STMFD, STMFA, STMED, STMEA, LDMFD, LDMFA, LDMED, LDMEA LDM是出栈指令,STM是入栈指令ED表示empty descending空递减, FA表示full ascending满递增。同理可知其它组合STMED表示空递减入栈,相当于STMDA指令,即decrease after,先执行操作再减一。原因是空栈,说明此时可以入栈; 因为栈地址增长方向是递减,因此第一个元素入栈结束后,需要为下一个元素申请下一个地址,地址增长,需要减一LDMED表示空递减出栈,相当于LDMIB指令,即increase before,先加一再执行操作。原因是满栈,说明此时可以弹.
tensorboard可视化 网址打不开 解决办法tensorboard --logdir logs --host=127.0.0.1其中logs为events.out.tfevents文件所在文件夹,注意网址打不开时加上host=127.0.0.1。参考链接:tensorboard 生成的网址不能正常打开访问
C C++ 对二进制数逐位取一 假如二进制数为x,它的位数为n。那么想要获得它的所有为1位,可以:#include <stdio.h>int main(){ int x = 0b1101101101; const int n = 10; int i; for (i = 0; i < n; i++) { if ( x & (1 << i) ) { printf("there is a 1:%d", i); } } return 0;}...
重载运算符 Box operator+(const Box&);Box为返回类型函数名是由关键字 operator 和其后要重载的运算符符号const Box&为参与运算的另一个参数大多数的重载运算符可被定义为普通的非成员函数或者被定义为类成员函数。如果我们定义上面的函数为类的非成员函数,那么我们需要为每次操作传递两个参数,如下所示:Box operator+(const Box&, const Box&);使用过程:Box3 = Box1 + Box2;.
LEGB规则 LEGB规则Python 在查找"名称"时,是按照 LEGB 规则查找的:Local–>Enclosed–>Global–>Built inLocal 指的就是函数或者类的方法内部Enclosed 指的是嵌套函数(一个函数包裹另一个函数,闭包)Global 指的是模块中的全局变量Built in 指的是 Python 为自己保留的特殊名称...
control_flow_ops.while_loop函数循环 control_flow_ops.while_loop函数循环_, ignore_mask = K.control_flow_ops.while_loop(lambda b,*args: b<m, loop_body, [0, ignore_mask])lambda b,*args: b<m:是条件函数 ( lambda 是匿名函数关键字。b,*args是形参,b<m是返回的结果)loop_body:是循环目标函数[0, ignore_mask]:是函数的起始实参
placeholder 张量维数 张量的shape from keras import backend as Kimport tensorflow as tfsess = tf.Session()a1 = K.placeholder(shape = (1,3))a2 = K.placeholder(shape = (3,)) # 此处填写(3,)与(3)均可。但(3,) != 3, 而(3) == 3。故(3,)与(3)含义不同a11, a22 = sess.run([a1, a2], feed_dict = {a1:[[6,7,8]],
tf.Variable tf.placeholder tf.constant 区别 tf.Variable tf.placeholder tf.constant 区别import tensorflow as tf# 构建计算图节点(声明节点)a = tf.Variable(1) # 此阶段必须指定初值b = tf.constant(1)c = tf.placeholder(dtype=tf.int32, shape=(1,)) # 此阶段无需指定初值update = tf.assign(a, tf.add(a, b)) # 运行计算图前准备init = tf.glob
tf.round() K.round() 四舍六入五取偶 TensorFlow里的算子round不是什么四舍五入,而是Bankers Rounding——四舍六入五取偶import tensorflow as tfx = tf.constant([0.9, 2.5, 2.3, 1.5, -4.5])with tf.Session() as sess: sess.run(tf.round(x))# array([ 1., 2., 2., 2., -4.], dtype=float32)TensorFlow ops:tf.round为“Ban
假脱机技术 举个例子,两个人A、B去饭店点菜。正常情况下,A告诉服务员(CPU)菜名,厨师(打印机)为A做菜。那么在厨师做完菜之前,因为厨师一直为A服务,所以厨师属于A。服务员(CPU)不允许B点菜假脱机技术:A告诉服务员(CPU)菜名,服务员记录在小本子(硬盘)上,厨师(打印机)根据小本子(硬盘)记录的信息为A做菜。然后B点菜,服务员(CPU)在小本子(硬盘)上继续写菜名。B点菜后就可以干自己的事情,而不用等待厨师做完A的菜才能点菜。厨师则不断根据小本子(硬盘)记录的菜名先后顺序,不断做菜。实际情况中,打
[:-1]和 [::-1] b = a[:-1]表示从a的第一个元素复制到最后一个元素之前(切片[ ) ),给bc = a[:]表示从a的第一个元素复制到最后一个元素,给cd = a[::-1]表示从a的最后一个元素复制到第一个元素,给dd = a[i:j:s]表示:i,j表示切片,s表示步进,缺省为1.所以a[i:j:1]相当于a[i:j]当s<0,i缺省时,i默认为-1. j缺省时,j默认为-len(a)-1所以a[::-1]相当于 a[-1:-len(a)-1:-1],也就是从最后一个元素到第一个元素复制
tensorflow及keras中session的用法 使用方式import tensorflow as tffrom keras import backend as Kx = K.arange(0,13)with tf.Session() as sess: print(sess.run(x))参考链接:tf.keras.backend.arange函数tf.keras.backend.arange(start,stop=None,step=1,dtype=‘int32’)如果只提供一个参数,它实际上是“stop”参数