参数化,知识工程,仿真技术与AI结合实现快速性能预测

本文介绍了如何利用AI技术构建全参数化的几何模型,结合知识工程实现结构参数化;设计了一体化的仿真系统,自动关联数据源和仿真设置,通过多目标优化进行模型更新。AI模型的训练和调试后,用于快速性能预测,并与实际仿真结果进行对比,最终替代传统仿真模型提升效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、基于AI,快速构建全参数化的几何模型。结合知识工程,实现所需预测的结构、厚度、材料等信息的参数化;

2、设计仿真一体化,快速生成AI学习训练所需的仿真模型及数据。基于单一的数据源,全参数化设计模型与仿真技术自动关联,利用仿真自动化流程,多学科多目标优化技术,自动更新模型,自动更新仿真设置;

3、AI神经网格搭建以及AI模型训练&调试。

4、AI模型预测结果与实际仿真评价对比。

5、AI模型替换仿真模型,实现快速性能预测。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值