问题
一对兔子从出生后第三个月开始,每月生一对小兔子。小兔子到第三个月开始,能够生育下一代的小兔子。求1年中每个月的兔子的数量。
分析
根据问题,我们可以很容易地以列表的形式获得结果,如下所示。
| 种类 | 一月 | 二月 | 三月 | 四月 | 五月 | 六月 | 七月 | 八月 | 九月 | 十月 | 十一月 | 十二月 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 幼免 | 1 | 0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 |
| 成免 | 0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | 89 |
| 总数 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | 89 | 144 |
设免子对数yyy与月份nnn的关系为fff,即 y=f(n)y = f(n)y=f(n)根据以上列表,我们可以发现免子数量与月份之间的关系为:
y=f(n)={f(n−1)+f(n−2), if  n>2;1,      if  n≤1;
y=f(n)= \left\{
\begin{matrix}
f(n-1) + f(n-2),\ \ \mathrm{if} \:\: n > 2; \\
1, \:\:\:\:\:\:\mathrm{if} \:\: n \le 1;
\end{matrix}
\right.y=f(n)={f(n−1)+f(n−2), ifn>2;1,ifn≤1;
算法实现
int f(int n){
return f(n - 1) + f(n - 2);
}
讨论
使用递归是一种非常易于理解的方法,但是运算效率并不高。主要原因在于每次计算 f(n)f(n)f(n) 的时候,都需要计算 f(n−1)+f(n−2)f(n-1) + f(n-2)f(n−1)+f(n−2),时间复杂度扩展了一倍,即O(2n)O(2^n)O(2n),运算效率。
本文探讨了一个经典的数学问题:兔子繁殖。通过分析一对兔子如何在一年内繁殖,引出了斐波那契数列的概念。文章详细解释了兔子繁殖与斐波那契数列之间的关系,并提供了算法实现。
1万+

被折叠的 条评论
为什么被折叠?



