AI、机器学习、深度学习、大模型综述
人工智能、机器学习、深度学习和大模型的关系
近些年人工智能、机器学习和深度学习的概念十分火热,但很多从业者却很难说清它们之间的关系,外行人更是雾里看花。在研究深度学习之前,先从三个概念的正本清源开始。概括来说,人工智能、机器学习和深度学习覆盖的技术范畴是逐层递减的,三者的关系如 图 所示,即:人工智能 > 机器学习 > 深度学习。
人工智能(Artificial Intelligence,AI)是最宽泛的概念,是研发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。由于这个定义只阐述了目标,而没有限定方法,因此实现人工智能存在的诸多方法和分支,导致其变成一个“大杂烩”式的学科。机器学习(Machine Learning,ML)是当前比较有效的一种实现人工智能的方式。深度学习(Deep Learning,DL)是机器学习算法中最热门的一个分支,近些年取得了显著的进展,并替代了大多数传统机器学习算法。
机器学习
区别于人工智能,机器学习、尤其是监督学习则有更加明确的指代。机器学习是专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构,使之不断改善自身的性能。这句话有点“云山雾罩”的感觉,让人不知所云,下面我们从机器学习的实现原理和实施方法两个维度进行剖析,帮助读者更加清晰地认识机器学习的来龙去脉。
机器学习的实现原理
机器学习的实现可以分成两步:训练和预测,类似于归纳和演绎
训练(归纳)
从一定数量的样本(已知模型输入x和模型输出y)中,学习输出y与输入x的关系(归纳:从具体案例中抽象一般规律)。
预测(演绎)
基于训练得到的y与x之间的关系,如出现新的输入x,计算出输出y(演绎:从一般规律推导出具体案例的结果)。一般情况下,如果通过模型计算的输出和真实场景的输出一致,则说明模型是有效的。
机器学习的实施方法
机器学习的实施方法和人类科研的过程有着异曲同工之妙。通过大量实验数据的训练,确定模型参数。
如何确定模型参数
确定参数的过程与科学家提出假说的方式类似,合理的假说可以最大化的解释所有的已知观测数据。如果未来观测到不符合理论假说的新数据,科学家会尝试提出新的假说。如:天文史上,使用大圆和小圆组合的方式计算天体运行,在中世纪是可以拟合观测数据的。但随着欧洲工业革命的推动,天文观测设备逐渐强大,已有的理论已经无法解释越来越多的观测数据,这促进了使用椭圆计算天体运行的理论假说出现。
模型有效的基本条件是能够拟合已知的样本