第五课 简单图片分类

第五课 简单图片分类

#%%

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
print("PyTorch Version: ",torch.__version__)

#%% md

首先我们定义一个基于ConvNet的简单神经网络

#%%

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5, 1)
        self.conv2 = nn.Conv2d(20, 50, 5, 1)
        self.fc1 = nn.Linear(4*4*50, 500)
        self.fc2 = nn.Linear(500, 10)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2, 2)
        x = x.view(-1, 4*4*50)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)

#%% md

NLL loss的定义

$\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
        l_n = - w_{y_n} x_{n,y_n}, \quad
        w_{c} = \text{weight}[c] \cdot \mathbb{1}\{c \not= \text{ignore\_index}\}$

#%%

def train(model, device, train_loader, optimizer, epoch, log_interval=100):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % log_interval == 0:
            print("Train Epoch: {} [{}/{} ({:0f}%)]\tLoss: {:.6f}".format(
                epoch, batch_idx * len(data), len(train_loader.dataset), 
                100. * batch_idx / len(train_loader), loss.item()
            ))

#%%

def test(model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
            pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(test_loader.dataset)

    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))

#%%

torch.manual_seed(53113)

use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
batch_size = test_batch_size = 32
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('./mnist_data', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])),
    batch_size=batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('./mnist_data', train=False, transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])),
    batch_size=test_batch_size, shuffle=True, **kwargs)


lr = 0.01
momentum = 0.5
model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum)

epochs = 2
for epoch in range(1, epochs + 1):
    train(model, device, train_loader, optimizer, epoch)
    test(model, device, test_loader)

save_model = True
if (save_model):
    torch.save(model.state_dict(),"mnist_cnn.pt")

#%%

torch.manual_seed(53113)

use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
batch_size = test_batch_size = 32
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
    datasets.FashionMNIST('./fashion_mnist_data', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])),
    batch_size=batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
    datasets.FashionMNIST('./fashion_mnist_data', train=False, transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])),
    batch_size=test_batch_size, shuffle=True, **kwargs)


lr = 0.01
momentum = 0.5
model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum)

epochs = 2
for epoch in range(1, epochs + 1):
    train(model, device, train_loader, optimizer, epoch)
    test(model, device, test_loader)

save_model = True
if (save_model):
    torch.save(model.state_dict(),"fashion_mnist_cnn.pt")

#%% md

# CNN模型的迁移学习

#%% md

- 很多时候当我们需要训练一个新的图像分类任务,我们不会完全从一个随机的模型开始训练,而是利用_预训练_的模型来加速训练的过程。我们经常使用在`ImageNet`上的预训练模型。
- 这是一种transfer learning的方法。我们常用以下两种方法做迁移学习。
    - fine tuning: 从一个预训练模型开始,我们改变一些模型的架构,然后继续训练整个模型的参数。
    - feature extraction: 我们不再改变与训练模型的参数,而是只更新我们改变过的部分模型参数。我们之所以叫它feature extraction是因为我们把预训练的CNN模型当做一个特征提取模型,利用提取出来的特征做来完成我们的训练任务。
    
以下是构建和训练迁移学习模型的基本步骤:
- 初始化预训练模型
- 把最后一层的输出层改变成我们想要分的类别总数
- 定义一个optimizer来更新参数
- 模型训练

#%%

import numpy as np
import torchvision
from torchvision import datasets, transforms, models

import matplotlib.pyplot as plt
import time
import os
import copy
print("Torchvision Version: ",torchvision.__version__)

#%% md

数据
------

我们会使用*hymenoptera_data*数据集,[下载](https://download.pytorch.org/tutorial/hymenoptera_data.zip).

这个数据集包括两类图片, **bees****ants**, 这些数据都被处理成了可以使用`ImageFolder <https://pytorch.org/docs/stable/torchvision/datasets.html#torchvision.datasets.ImageFolder>`来读取的格式。我们只需要把``data_dir``设置成数据的根目录,然后把``model_name``设置成我们想要使用的与训练模型:
::
   [resnet, alexnet, vgg, squeezenet, densenet, inception]

其他的参数有:
- ``num_classes``表示数据集分类的类别数
- ``batch_size``
- ``num_epochs``
- ``feature_extract``表示我们训练的时候使用fine tuning还是feature extraction方法。如果``feature_extract = False``,整个模型都会被同时更新。如果``feature_extract = True``,只有模型的最后一层被更新。

#%%

# Top level data directory. Here we assume the format of the directory conforms 
#   to the ImageFolder structure
data_dir = "./hymenoptera_data"
# Models to choose from [resnet, alexnet, vgg, squeezenet, densenet, inception]
model_name = "resnet"
# Number of classes in the dataset
num_classes = 2
# Batch size for training (change depending on how much memory you have)
batch_size = 32
# Number of epochs to train for 
num_epochs = 15
# Flag for feature extracting. When False, we finetune the whole model, 
#   when True we only update the reshaped layer params
feature_extract = True

#%%

def train_model(model, dataloaders, criterion, optimizer, num_epochs=5):
    since = time.time()
    val_acc_history = []
    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.
    for epoch in range(num_epochs):
        print("Epoch {}/{}".format(epoch, num_epochs-1))
        print("-"*10)
        
        for phase in ["train", "val"]:
            running_loss = 0.
            running_corrects = 0.
            if phase == "train":
                model.train()
            else: 
                model.eval()
            
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)
                
                with torch.autograd.set_grad_enabled(phase=="train"):
                    outputs = model(inputs)
                    loss = criterion(outputs, labels)
                    
                _, preds = torch.max(outputs, 1)
                if phase == "train":
                    optimizer.zero_grad()
                    loss.backward()
                    optimizer.step()
                    
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds.view(-1) == labels.view(-1)).item()
            
            epoch_loss = running_loss / len(dataloaders[phase].dataset)
            epoch_acc = running_corrects / len(dataloaders[phase].dataset)
       
            print("{} Loss: {} Acc: {}".format(phase, epoch_loss, epoch_acc))
            if phase == "val" and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())
            if phase == "val":
                val_acc_history.append(epoch_acc)
            
        print()
    
    time_elapsed = time.time() - since
    print("Training compete in {}m {}s".format(time_elapsed // 60, time_elapsed % 60))
    print("Best val Acc: {}".format(best_acc))
    
    model.load_state_dict(best_model_wts)
    return model, val_acc_history

#%%

# it = iter(dataloaders_dict["train"])
# inputs, labels = next(it)
# for inputs, labels in dataloaders_dict["train"]:
#     print(labels.size())

#%%

def set_parameter_requires_grad(model, feature_extracting):
    if feature_extracting:
        for param in model.parameters():
            param.requires_grad = False

#%%

def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
    if model_name == "resnet":
        model_ft = models.resnet18(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        num_ftrs = model_ft.fc.in_features
        model_ft.fc = nn.Linear(num_ftrs, num_classes)
        input_size = 224
        
    return model_ft, input_size
model_ft, input_size = initialize_model(model_name, num_classes, feature_extract, use_pretrained=True)
print(model_ft)

#%% md

读入数据
---------

现在我们知道了模型输入的size,我们就可以把数据预处理成相应的格式。


#%%

all_imgs = datasets.ImageFolder(os.path.join(data_dir, "train"), transforms.Compose([
        transforms.RandomResizedCrop(input_size),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
    ]))
loader = torch.utils.data.DataLoader(all_imgs, batch_size=batch_size, shuffle=True, num_workers=4)

#%%

img = next(iter(loader))[0]

#%%

unloader = transforms.ToPILImage()  # reconvert into PIL image

plt.ion()

def imshow(tensor, title=None):
    image = tensor.cpu().clone()  # we clone the tensor to not do changes on it
    image = image.squeeze(0)      # remove the fake batch dimension
    image = unloader(image)
    plt.imshow(image)
    if title is not None:
        plt.title(title)
    plt.pause(0.001) # pause a bit so that plots are updated


plt.figure()
imshow(img[31], title='Image')


#%%

data_transforms = {
    "train": transforms.Compose([
        transforms.RandomResizedCrop(input_size),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    "val": transforms.Compose([
        transforms.Resize(input_size),
        transforms.CenterCrop(input_size),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

print("Initializing Datasets and Dataloaders...")

# Create training and validation datasets
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}
# Create training and validation dataloaders
dataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=4) for x in ['train', 'val']}

# Detect if we have a GPU available
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

#%%

# Send the model to GPU
model_ft = model_ft.to(device)

# Gather the parameters to be optimized/updated in this run. If we are
#  finetuning we will be updating all parameters. However, if we are 
#  doing feature extract method, we will only update the parameters
#  that we have just initialized, i.e. the parameters with requires_grad
#  is True.
params_to_update = model_ft.parameters()
print("Params to learn:")
if feature_extract:
    params_to_update = []
    for name,param in model_ft.named_parameters():
        if param.requires_grad == True:
            params_to_update.append(param)
            print("\t",name)
else:
    for name,param in model_ft.named_parameters():
        if param.requires_grad == True:
            print("\t",name)

# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(params_to_update, lr=0.001, momentum=0.9)

#%%

# Setup the loss fxn
criterion = nn.CrossEntropyLoss()

# Train and evaluate
model_ft, ohist = train_model(model_ft, dataloaders_dict, criterion, optimizer_ft, num_epochs=num_epochs)

#%%

# Initialize the non-pretrained version of the model used for this run
scratch_model,_ = initialize_model(model_name, num_classes, feature_extract=False, use_pretrained=False)
scratch_model = scratch_model.to(device)
scratch_optimizer = optim.SGD(scratch_model.parameters(), lr=0.001, momentum=0.9)
scratch_criterion = nn.CrossEntropyLoss()
_,scratch_hist = train_model(scratch_model, dataloaders_dict, scratch_criterion, scratch_optimizer, num_epochs=num_epochs)


#%%


# Plot the training curves of validation accuracy vs. number 
#  of training epochs for the transfer learning method and
#  the model trained from scratch
# ohist = []
# shist = []

# ohist = [h.cpu().numpy() for h in ohist]
# shist = [h.cpu().numpy() for h in scratch_hist]

plt.title("Validation Accuracy vs. Number of Training Epochs")
plt.xlabel("Training Epochs")
plt.ylabel("Validation Accuracy")
plt.plot(range(1,num_epochs+1),ohist,label="Pretrained")
plt.plot(range(1,num_epochs+1),scratch_hist,label="Scratch")
plt.ylim((0,1.))
plt.xticks(np.arange(1, num_epochs+1, 1.0))
plt.legend()
plt.show()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值