【集合类状态压缩DP模板题】Acwing 91. 最短Hamilton路径

题目描述

在这里插入图片描述

状态压缩DP(优化dfs的好方法)

1.jpg

状态表示:f[i,j]:所有从0走到j,走过得所有点是i(i是状态压缩的值,存所有走过的点)的所有路径
状态计算(划分依据):枚举走的倒数第2个点是k( k = 0~n-1) f[i][j] = f[i-{j},k] + w[k][j];

时间复杂度:DP的时间复杂度计算:状态数量 × 状态转移( 2 20 2^{20} 220 * 20 * 20)

总结:
状态压缩:i是状态压缩,存所有走过的点
划分依据:枚举倒数第2个点走的是哪个点
状态要有意义,如i >> j & 1,(i - (1<<j)) >> k & 1

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 20, M = 1<<N;

int n;
int w[N][N];
int f[M][N];

int main()
{
    cin >> n;
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
            cin >> w[i][j];
            
    memset(f,0x3f,sizeof f);
    f[1][0] = 0; // 从0走到0,状态包含0,路径为0
    
    for(int i=0;i< 1<<n;i++)
        for(int j=0;j<n;j++)
            if(i >> j & 1) // 从0走到j,状态i得先包含j这个点
                for(int k=0;k<n;k++)
                    if((i - (1<<j)) >> k & 1) // 同理,从k转移到j,得在状态i-{j}里包含k
                        f[i][j] = min(f[i][j],f[i - (1<<j)][k] + w[k][j]);
    
    cout<<f[(1<<n)-1][n-1]<<endl;
    
    return 0;
                    
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值