随着云服务的广泛使用,云安全问题成为云技术领域的研究问题之一,主要包括通信安全、存储安全和计算安全。通信安全和存储安全都可以通过加密等方案解决,而运行安全的解决方案主要是通过虚拟机,在不同的虚拟机中进行不同用户的计算,通过虚拟机的隔离实现不同用户运行程序的隔离以及服务器资源的划分(一个物理服务器多个虚拟机机多个云服务器),但是虚拟机的运行消耗大量的CPU性能,降低CPU的利用率。docker容器实际是以程序存在,存在越权问题,无法保证不同程序间的安全隔离。
有什么更好的节约资源的解决方法呢?→硬件安全→SGX技术。
转载自
https://baijiahao.baidu.com/s?id=1651881691981567030&wfr=spider&for=pc
2017年,阿里云和英特尔联合发布了基于 SGX 的加密计算技术后,又在 2018 年推出了神龙云服务器,该服务器既保留了物理机的性能优势和硬件级隔离,又具备虚拟机的弹性资源、分钟级交付、全自动运维的优势(使用基于SGX的加密计算实现硬件级隔离)。
在SGX的其他应用方面,阿里云解锁了 FPGA 设备和智能网卡,通过 FPGA 加密计算技术让今天主流的机器学习计算模型和数据相关的计算都可以运行在可信环境中,将系统的可信扩展到网络上,通过智能网卡加密计算技术实现可信网络。
而联合英特尔发布了针对云原生 Golang 应用保护的 Graphene Golang 开源解决方案可能算是真正降低了 SGX 的技术门槛,它要做的是让阿里云上基于 Golang 开发的云原生应用可以不经修改即可通过 SGX 技术进行保护,这样一来,更多企业可以用上加密计算的安全能力。
SGX 还能用在什么地方。
清华大学团队在机器学习网络上发现了应用点。
联邦机器学习会将模型给到不同数据所有者进行训练,很容易出现参与者不按预期执行训练任务,通过不训练或少训练来骗取奖励,造成模型污染或降低模型准确性。于是,他们利用 SGX 技术提高了联邦机器学习网络的可靠性。
长虹电子启思实验室将 SGX 技术应用到智能电视用户通过声纹完成在线支付的场景中,保障声纹支付的安全性。