递归(recursion)
1 常见题目类型
1.1 (lee-509) 斐波那契数
通常用F(n) 表示,形成的序列称为斐波那契数列。该数列由0和1开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0)= 0, F(1) = 1
F(N)= F(N - 1) + F(N - 2), 其中 N > 1.
给定N,计算F(N)。
输入:2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1
思路:根据状态转移方程和边界条件,可以得到时间复杂度和空间复杂度都是 O(n) 的实现。由于 F(n) 只和 F(n−1) 与 F(n−2) 有关,因此可以使用「滚动数组思想」把空间复杂度优化成 O(1)。
1.1.1 迭代(自底向上)
/*
* 1.迭代(自底向上)
*/
public int fib(int n) {
if(n <= 1) {
return n;
}
return memoize(n);
}
private int memoize(int n) {
int[] cache = new int[n+1];
cache[1] = 1;
for(int i = 2;i <=n;i++) {
cache[i] = cache[i-1] + cache[i-2];
}
return cache[n];
}
1.1.2 递归(自顶向下)
/*
* 2.递归(自顶向下)
*/
private Integer[] cache = new Integer[31];
public int fib(int n) {
if(n <= 1) {
return n;
}
cache[0] = 0;
cache[1] = 1;
return memoize(n);
}
private int memoize(int n) {
if(cache[n]!= null) {
return cache[n];
}
cache[n] = memoize(n-1) +memoize(n-2);
return memoize(n);
}
1.1.3 DP
public int fib(int n) {
if(n <= 1){
return n;
}
int[] dp = new int[n+1];
dp[0] = 0;
dp[1] = 1;
for(int i = 2;i <= n;i++){
dp[i] = dp[i-1] + dp[i-2];
}
return dp[n];
}
1.1.4 DP优化
public int fib(int n) {
if (n < 2) {
return n;
}
int p = 0, q = 0, r = 1;
for (int i = 2; i <= n; ++i) {
p = q;
q = r;
r = p + q;
}
return r;
}
1.2 (lee-22) 括号生成
数字 n 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且 有效的 括号组合
输入:n = 3
输出:["((()))","(()())","(())()","()(())", “()()()”]
暴力思路:我们可以生成所有 2^2n 个 ‘(’ 和 ‘)’ 字符构成的序列,然后我们检查每一个是否有效即可。
算法:为了生成所有序列,我们可以使用递归。长度为 n 的序列就是在长度为 n-1 的序列前加一个 ‘(’ 或 ‘)’。
为了检查序列是否有效,我们遍历这个序列,并使用一个变量 balance 表示左括号的数量减去右括号的数量。如果在遍历过程中 balance 的值小于零,或者结束时 balance 的值不为零,那么该序列就是无效的,否则它是有效的。
按括号序列的长度递归
思路与算法:任何一个括号序列都一定是由 ( 开头,并且第一个 ( 一定有一个唯一与之对应的 )。这样一来,每一个括号序列可以用 (a)b 来表示,其中 a 与 b 分别是一个合法的括号序列(可以为空)。
那么,要生成所有长度为 2 * n 的括号序列,我们定义一个函数 generate(n) 来返回所有可能的括号序列。那么在函数 generate(n) 的过程中:
我们需要枚举与第一个 ( 对应的 ) 的位置 2 * i + 1;
递归调用 generate(i) 即可计算 a 的所有可能性;
递归调用 generate(n - i - 1) 即可计算 b 的所有可能性;
遍历 a 与 b 的所有可能性并拼接,即可得到所有长度为 2 * n 的括号序列。
为了节省计算时间,我们在每次 generate(i) 函数返回之前,把返回值存储起来,下次再调用 generate(i) 时可以直接返回,不需要再递归计算。
/**
* DFS按括号序列的长度递归
*/
public List<String> generateParenthesis(int n) {
List<String> res = new ArrayList<>();
dfs(res,n,n,"");
return res;
}
private void dfs(List<String> res, int left, int right, String curStr) {
if(left == 0 && right == 0) { //递归终止条件
res.add(curStr);
return;
}
if(left > 0 ) {
dfs(res, left - 1,right,curStr + "(");//如果左括号还剩余的话拼接左括号
}
if(right > left) {
dfs(res, left,right - 1,curStr + ")");//如果右括号剩余多于左括号剩余的话,拼接右括号
}
}
1.3 (lee-24) 两两交换链表中的节点
给定一个链表,两两交换其中相邻的节点,并返回交换后的链表。你不能只是单纯的改变节点内部的值,而是需要实际的进行节点交换。
输入:head = [1,2,3,4]
输出:[2,1,4,3]
输入:head = []
输出:[]
输入:head = [1]
输出:[1]
1.3.1 递归
/*
* 1.递归
* 基本操作:一次两两交换
* 结束条件:链表为空或者链表中只有一个节点
* 时间:O(n)
* 空间:O(n)
*/
public ListNode swapPairs(ListNode head) {
if(head==null || head.next==null) {
return head;
}
ListNode newHead = head.next;//新链表的头结点为旧链表的头结点的下一个节点,其余节点的头结点为newHead.next
head.next = swapPairs(newHead.next);//将其余节点进行两两交换,交换后的新的头结点为head的下一个节点
newHead.next = head;
return newHead;
}
1.3.2 迭代
/*
* 2.直接迭代
* 空间复杂度小,速度快
* 时间:O(n)
* 空间:O(1)
*/
public ListNode swapPairs(ListNode head) {
ListNode newHead = new ListNode(-1);
newHead.next = head;
ListNode pre = newHead;
while(pre.next != null && pre.next.next != null) {
ListNode l1 = pre.next;
ListNode l2 = pre.next.next;
ListNode next = l2.next;
l1.next = next;
l2.next = l1;
pre.next = l2;
pre = l1;
}
return newHead.next;
}