递归(recursion)

1 常见题目类型

1.1 (lee-509) 斐波那契数

通常用F(n) 表示,形成的序列称为斐波那契数列。该数列由0和1开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0)= 0, F(1) = 1
F(N)= F(N - 1) + F(N - 2), 其中 N > 1.
给定N,计算F(N)。

输入:2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1

思路:根据状态转移方程和边界条件,可以得到时间复杂度和空间复杂度都是 O(n) 的实现。由于 F(n) 只和 F(n−1) 与 F(n−2) 有关,因此可以使用「滚动数组思想」把空间复杂度优化成 O(1)。

1.1.1 迭代(自底向上)

	/*
	 * 1.迭代(自底向上)
	 */
	public int fib(int n) {
		if(n <= 1) {
			return n;
		}
		return memoize(n);
    }

	private int memoize(int n) {
		int[] cache = new int[n+1];
		cache[1] = 1;
		for(int i = 2;i <=n;i++) {
			cache[i] = cache[i-1] + cache[i-2];
		}
		return cache[n];
	}

1.1.2 递归(自顶向下)

	/*
	 * 2.递归(自顶向下)
	 */
	private Integer[] cache = new Integer[31];
	public int fib(int n) {
		if(n <= 1) {
			return n;
		}
		cache[0] = 0;
		cache[1] = 1;
		return memoize(n);
	}

	private int memoize(int n) {
		if(cache[n]!= null) {
			return cache[n];
		}
		cache[n] = memoize(n-1) +memoize(n-2);
		return memoize(n);
	}

1.1.3 DP

	public int fib(int n) {
        if(n <= 1){
            return n;
        }
        int[] dp  = new int[n+1];
        dp[0] = 0;
        dp[1] = 1;
        for(int i = 2;i <= n;i++){
             dp[i] = dp[i-1] + dp[i-2];
        }
        return dp[n];
    }

1.1.4 DP优化

	public int fib(int n) {
        if (n < 2) {
            return n;
        }
        int p = 0, q = 0, r = 1;
        for (int i = 2; i <= n; ++i) {
            p = q; 
            q = r; 
            r = p + q;
        }
        return r;
    }

1.2 (lee-22) 括号生成

数字 n 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且 有效的 括号组合

输入:n = 3
输出:["((()))","(()())","(())()","()(())", “()()()”]

暴力思路:我们可以生成所有 2^2n 个 ‘(’ 和 ‘)’ 字符构成的序列,然后我们检查每一个是否有效即可。
算法:为了生成所有序列,我们可以使用递归。长度为 n 的序列就是在长度为 n-1 的序列前加一个 ‘(’ 或 ‘)’。
为了检查序列是否有效,我们遍历这个序列,并使用一个变量 balance 表示左括号的数量减去右括号的数量。如果在遍历过程中 balance 的值小于零,或者结束时 balance 的值不为零,那么该序列就是无效的,否则它是有效的。

按括号序列的长度递归
思路与算法:任何一个括号序列都一定是由 ( 开头,并且第一个 ( 一定有一个唯一与之对应的 )。这样一来,每一个括号序列可以用 (a)b 来表示,其中 a 与 b 分别是一个合法的括号序列(可以为空)。
那么,要生成所有长度为 2 * n 的括号序列,我们定义一个函数 generate(n) 来返回所有可能的括号序列。那么在函数 generate(n) 的过程中:

我们需要枚举与第一个 ( 对应的 ) 的位置 2 * i + 1;
递归调用 generate(i) 即可计算 a 的所有可能性;
递归调用 generate(n - i - 1) 即可计算 b 的所有可能性;
遍历 a 与 b 的所有可能性并拼接,即可得到所有长度为 2 * n 的括号序列。

为了节省计算时间,我们在每次 generate(i) 函数返回之前,把返回值存储起来,下次再调用 generate(i) 时可以直接返回,不需要再递归计算。

	/**
	 * DFS按括号序列的长度递归
	 */	
	public List<String> generateParenthesis(int n) {
		List<String> res = new ArrayList<>();
		dfs(res,n,n,"");
		return res;
    }

	private void dfs(List<String> res, int left, int right, String curStr) {
		if(left == 0 && right == 0) {        //递归终止条件
			res.add(curStr);
			return;
		}
		if(left > 0 ) {
			dfs(res, left - 1,right,curStr + "(");//如果左括号还剩余的话拼接左括号
		}
		if(right > left) {
			dfs(res, left,right - 1,curStr + ")");//如果右括号剩余多于左括号剩余的话,拼接右括号
		}
	}

1.3 (lee-24) 两两交换链表中的节点

给定一个链表,两两交换其中相邻的节点,并返回交换后的链表。你不能只是单纯的改变节点内部的值,而是需要实际的进行节点交换

输入:head = [1,2,3,4]
输出:[2,1,4,3]
输入:head = []
输出:[]
输入:head = [1]
输出:[1]

1.3.1 递归

	/*
	 * 1.递归
	 * 基本操作:一次两两交换
	 * 结束条件:链表为空或者链表中只有一个节点
	 * 时间:O(n)
	 * 空间:O(n)
	 */
	public ListNode swapPairs(ListNode head) {
		if(head==null || head.next==null) {
			return head;
		}
		ListNode newHead = head.next;//新链表的头结点为旧链表的头结点的下一个节点,其余节点的头结点为newHead.next
		head.next = swapPairs(newHead.next);//将其余节点进行两两交换,交换后的新的头结点为head的下一个节点
		newHead.next = head; 
		return newHead;
	}

1.3.2 迭代

	/*
	 * 2.直接迭代
	 * 空间复杂度小,速度快
	 * 时间:O(n)
	 * 空间:O(1)
	 */
	public ListNode swapPairs(ListNode head) {
		ListNode newHead = new ListNode(-1);
		newHead.next = head;
		ListNode pre = newHead;
		while(pre.next != null && pre.next.next != null) {
			ListNode l1 = pre.next;
			ListNode l2 = pre.next.next;
			ListNode next = l2.next;
			l1.next = next;
			l2.next = l1;
			pre.next = l2;
			pre = l1;
		}
		return newHead.next;
    }

2 练习链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值