3.【Python】分类算法—Softmax Regression
文章目录
前言
Softmax回归算法主要用于多分类问题,是逻辑回归算法的推广,值得注意的是,Softmax回归算法中任意两个类是线性可分的。
一、Softmax Regression模型
1.Softmax Regression模型
对于Softmax Regression模型,输入特征为 X ( i ) ϵ R n + 1 X^{(i)}\epsilon R^ {n+1} X(i)ϵRn+1,类标记为 y ( i ) ϵ 0 , 1 , . . . , k y^{(i)}\epsilon{0,1,...,k} y(i)ϵ0,1,...,k。假设函数为每一个样本估计其所属的类别的概率 P ( y = j ∣ X ) P(y=j |X) P(y=j∣X)。具体假设函数如下,其中 Θ \Theta Θ表示向量。
则对于每一个样本估计其所属的类别的概率为:
2.Softmax Regression的损失函数
在Softmax Regression算法的损失函数中引入指令函数 I ( ⋅ ) I(\cdot ) I(⋅),表示为:
与Logistic Regression算法中对于损失函数的处理方式类似,都采用极大似然法,并以负的log似然函数作为损失函数,表示为:
I { y ( i ) = j } I \left \{ y^{(i)}=j \right \} I{
y(i)=j}表示属于第j类时, I { y ( i ) = j } = 1 I \left \{ y^{(i)}=j \right \}=1 I{