3.【Python】分类算法—Softmax Regression

3.【Python】分类算法—Softmax Regression


前言

Softmax回归算法主要用于多分类问题,是逻辑回归算法的推广,值得注意的是,Softmax回归算法中任意两个类是线性可分的。


一、Softmax Regression模型

1.Softmax Regression模型

对于Softmax Regression模型,输入特征为 X ( i ) ϵ R n + 1 X^{(i)}\epsilon R^ {n+1} X(i)ϵRn+1,类标记为 y ( i ) ϵ 0 , 1 , . . . , k y^{(i)}\epsilon{0,1,...,k} y(i)ϵ0,1...,k。假设函数为每一个样本估计其所属的类别的概率 P ( y = j ∣ X ) P(y=j |X) P(y=jX)。具体假设函数如下,其中 Θ \Theta Θ表示向量。
在这里插入图片描述

则对于每一个样本估计其所属的类别的概率为:

在这里插入图片描述

2.Softmax Regression的损失函数

在Softmax Regression算法的损失函数中引入指令函数 I ( ⋅ ) I(\cdot ) I(),表示为:
在这里插入图片描述
与Logistic Regression算法中对于损失函数的处理方式类似,都采用极大似然法,并以负的log似然函数作为损失函数,表示为:
在这里插入图片描述
I { y ( i ) = j } I \left \{ y^{(i)}=j \right \} I{ y(i)=j}表示属于第j类时, I { y ( i ) = j } = 1 I \left \{ y^{(i)}=j \right \}=1 I{

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值