第五章 概率分析和随机算法 5.2 指示器随机变量

5.2 指示器随机变量

一. 指示器随机变量

1. 相关定义

  给定一个样本空间 S S S 和 一个事件 A A A ,那么事件 A A A 对应的指示器随机变量 I { A } I\{A\} I{A} 定义为:
I { A } = { 1 如果  A  发生 0 如果  A  不发生 I\{A\}=\begin{cases}1&\text{如果 $A$ 发生}\\0&\text{如果 $A$ 不发生}\end{cases} I{A}={10如果 A 发生如果 A 不发生


  引理 5.1 5.1 5.1 :给定一个样本空间 S S S S S S 中的一个事件 A A A ,设 X A = I { A } X_A=I\{A\} XA=I{A} ,那么 E [ X A ] = P r { A } E[X_A]=Pr\{A\} E[XA]=Pr{A}

  证明:由指示器随机变量的定义,期望值的定义知,
E [ X A ] = E [ I { A } ] = 1 ⋅ P r { A } + 0 ⋅ P r { A ‾ } = P r { A } E[X_A]=E[I\{A\}]=1\cdot Pr\{A\}+0\cdot Pr\{\overline A\}=Pr\{A\} E[XA]=E[I{A}]=1Pr{A}+0Pr{A}=Pr{A}
其中 A ‾ \overline A A 表示 S − A S-A SA ,即 A A A 的补。

2. 用指示器随机变量分析雇用问题

  如 5.1 雇用问题,假设应聘者以随机顺序出现, X i X_i Xi 对应于第 i i i 个应聘者被雇用该事件的指示器随机变量。因而,
X i = I { 应聘者  i  被雇用} = { 1 如果应聘者  i  被雇用 0 如果应聘者  i  不被雇用 X_i=I\{\text{应聘者 $i$ 被雇用\}}=\begin{cases}1&\text{如果应聘者 $i$ 被雇用}\\0&\text{如果应聘者 $i$ 不被雇用}\end{cases} Xi=I{应聘者 i 被雇用}={10如果应聘者 i 被雇用如果应聘者 i 不被雇用
以及
X = X 1 + X 2 + . . . + X n X=X_1+X_2+...+X_n X=X1+X2+...+Xn
根据引理 5.1 5.1 5.1 ,我们有
E [ X i ] = P r { 应聘者  i  被雇用 } E[X_i]=Pr\{\text{应聘者 $i$ 被雇用}\} E[Xi]=Pr{应聘者 i 被雇用}
因此必须计算 HIRE-ASSISTANT 中第 5 5 5 ~ 6 6 6 行 被执行的概率。
  在第 6 6 6 行中,应聘者 i i i 被雇用,正好应聘者 i i i 比从 1 1 1 i − 1 i-1 i1 的每一个应聘者优秀。因为我们已经假设应聘者以随机顺序出现,所以前 i i i 个应聘者也以随机次序出现。这些前 i i i 个应聘者中的任意一个都等可能地是目前最有资格的。应聘者 i i i 比应聘者 1 1 1 i − 1 i-1 i1 更有资格的概率是 1 / i 1/i 1/i ,因而也以 1 / i 1/i 1/i 的概率被雇用。由引理 5.1 5.1 5.1 ,可得
E [ X i ] = 1 / i E[X_i]=1/i E[Xi]=1/i
现在可以计算 E [ X ] E[X] E[X]
E [ X ] = E [ ∑ i = 1 n X i ] = ∑ i = 1 n E [ X i ] = ∑ i = 1 n 1 / i = ln ⁡ n + O ( 1 ) \begin{aligned}E[X]&=E[\sum_{i=1}^{n}X_i]\\&=\sum_{i=1}^n E[X_i]\\&=\sum_{i=1}^n1/i\\&=\ln n+O(1)\end{aligned} E[X]=E[i=1nXi]=i=1nE[Xi]=i=1n1/i=lnn+O(1)

  引理 5.2 5.2 5.2 :假设应聘者以随机次序出现,算法 HIRE-ASSISTANT 总的雇用费用平均情形下为 O ( c h ln ⁡ n ) O(c_h\ln n) O(chlnn)

  证明:根据雇用费用的定义和上述等式,可以立即推出这个界,说明雇用的人数期望值约是 lg ⁡ n . \lg n. lgn.

二. 练习

5. 2-1

  在 HIRE-ASSISTANT 中,假设应聘者以随机顺序出现,你正好雇用一次的概率是多少?正好雇用 n n n 次的概率是多少?

  解:雇用一次表示第一次应聘者为 n n n ,概率为 1 / n 1/n 1/n 。雇用 n n n 次表示应聘者顺序为 < 1 , 2 , . . . , n > <1,2,...,n> <1,2,...,n> ,概率为 1 / n ! 1/n! 1/n!

5. 2-2

  在 HIRE-ASSISTANT 中,假设应聘者以随机顺序出现,你正好雇用两次的概率是多少?

  解:若第一个应聘者为 k k k ,则 k + 1 , k + 2 , . . . , n − 1 k+1, k+2,...,n-1 k+1,k+2,...,n1 均在 n n n 之后,因此
E ( X ) = ∑ i = 1 n − 1 1 n ⋅ 1 n − i = 1 n ∑ i = 1 n − 1 1 i E(X)=\sum_{i=1}^{n-1}\frac{1}{n}\cdot\frac{1}{n-i}=\frac{1}{n}\sum_{i=1}^{n-1}\frac{1}{i} E(X)=i=1n1n1ni1=n1i=1n1i1

5. 2-3

  利用指示器随机变量来计算掷 n n n 个骰子之和的期望值。

  解: E ( X i ) = 3.5 E(X_i)=3.5 E(Xi)=3.5 ,于是 E ( X ) = 3.5 n E(X)=3.5n E(X)=3.5n

5. 2-4

  利用指示器随机变量来解如下的帽子核对问题(hat-heck problem): n n n 位顾客,他们每个人给餐厅核对帽子的服务生一顶帽子。服务生以随机顺序将帽子归还给顾客。请问拿到自己帽子的客户的期望数是多少?

  解:设 X i X_i Xi 是第 i i i 名顾客拿到自己帽子的随机变量, X X X 表示 n n n 位顾客拿到自己帽子的数目,因此
E ( X ) = ∑ i = 1 n 1 n = 1 E(X)=\sum_{i=1}^{n}\frac{1}{n}=1 E(X)=i=1nn1=1

5. 2-5

  设 A [ 1.. n ] A[1..n] A[1..n] 是由 n n n 个不同数构成的数列。如果 i < j i<j i<j A [ i ] > A [ j ] A[i]>A[j] A[i]>A[j] ,则称 ( i , j ) (i,j) (i,j) 对为 A A A 的一个逆序对(inversion) 。(参看思考题 2 − 4 2-4 24 中更多关于逆序对的例子。)假设 A A A 的元素构成 < 1 , 2 , . . . , n > <1,2,...,n> <1,2,...,n> 上的一个均匀随机排列。请用指示器随机变量来计算其中逆序对的数目期望。

  解:记 X i , j X_{i,j} Xi,j 是表示 A [ i ] > A [ j ] A[i]>A[j] A[i]>A[j] 的随机变量,因此
E ( ∑ i < j X i , j ) = ∑ i = 1 n − 1 ∑ j = i + 1 n P r { A [ i ] > A [ j ] } = 1 2 ∑ i = 1 n − 1 n − i = n ( n − 1 ) 4 E(\sum_{i<j} X_{i,j})=\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}Pr\{A[i]>A[j]\}=\frac{1}{2}\sum_{i=1}^{n-1}n-i=\frac{n(n-1)}{4} E(i<jXi,j)=i=1n1j=i+1nPr{A[i]>A[j]}=21i=1n1ni=4n(n1)

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值