本博客转自添加链接描述
基本思想
归并排序(MERGE-SORT)是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起,即分而治之)。
分而治之
可以看到这种结构很像一棵完全二叉树,本文的归并排序我们采用递归去实现(也可采用迭代的方式去实现)。分阶段可以理解为就是递归拆分子序列的过程,递归深度为log2n。
合并相邻有序子序列
再来看看治阶段,我们需要将两个已经有序的子序列合并成一个有序序列,比如上图中的最后一次合并,要将[4,5,7,8]和[1,2,3,6]两个已经有序的子序列,合并为最终序列[1,2,3,4,5,6,7,8],来看下实现步骤。
代码实现
package sortdemo;
import java.util.Arrays;
/**
* Created by chengxiao on 2016/12/8.
*/
public class MergeSort {
public static void main(String []args){
int []arr = {9,8,7,6,5,4,3,2,1};
sort(arr);
System.out.println(Arrays.toString(arr));
}
public static void sort(int []arr){
int []temp = new int[arr.length];//在排序前,先建好一个长度等于原数组长度的临时数组,避免递归中频繁开辟空间
sort(arr,0,arr.length-1,temp);
}
private static void sort(int[] arr,int left,int right,int []temp){
if(left<right){
int mid = (left+right)/2;
sort(arr,left,mid,temp);//左边归并排序,使得左子序列有序
sort(arr,mid+1,right,temp);//右边归并排序,使得右子序列有序
merge(arr,left,mid,right,temp);//将两个有序子数组合并操作
}
}
private static void merge(int[] arr,int left,int mid,int right,int[] temp){
int i = left;//左序列指针
int j = mid+1;//右序列指针
int t = 0;//临时数组指针
while (i<=mid && j<=right){
if(arr[i]<=arr[j]){
temp[t++] = arr[i++];
}else {
temp[t++] = arr[j++];
}
}
while(i<=mid){//将左边剩余元素填充进temp中
temp[t++] = arr[i++];
}
while(j<=right){//将右序列剩余元素填充进temp中
temp[t++] = arr[j++];
}
t = 0;
//将temp中的元素全部拷贝到原数组中
while(left <= right){
arr[left++] = temp[t++];
}
}
}
执行结果
[1, 2, 3, 4, 5, 6, 7, 8, 9]
最后
归并排序是稳定排序,它也是一种十分高效的排序,能利用完全二叉树特性的排序一般性能都不会太差。java中Arrays.sort()采用了一种名为TimSort的排序算法,就是归并排序的优化版本。从上文的图中可看出,每次合并操作的平均时间复杂度为O(n),而完全二叉树的深度为|log2n|。总的平均时间复杂度为O(nlogn)。而且,归并排序的最好,最坏,平均时间复杂度均为O(nlogn)。
例题:
洛谷P1309 瑞士轮:P1309瑞士轮
题解:
这题就是典型利用归并排序的一道模板题,若使用快排,结果会超时。因为每一轮比赛后,获胜的人群组成的集合是有序的,失败的人群组成的集合是有序的,如果利用归并排序,这里排序的复杂度只有O(n)。
#include<iostream>
#include<vector>
#include<stdio.h>
#include<algorithm>
#include<map>
using namespace std;
const int maxn = 200000 + 5;
int widx = 0;
int lidx = 0;
int w[maxn];
struct p {
int score;
int order;
}stu[maxn],win[100000+5],lose[100000+5];
bool cmp(p p1, p p2) {
if (p1.score > p2.score)
return true;
else if (p1.score == p2.score)
if (p1.order < p2.order)
return true;
return false;
}
void merge() {
int i = 1, j = 1;
int idx = 1;
while (i <= widx && j <= lidx) {
if (cmp(win[i], lose[j]))
stu[idx++] = win[i++];
else
stu[idx++] = lose[j++];
}
while (i <= widx)
stu[idx++] = win[i++];
while(j<=lidx)
stu[idx++] = lose[j++];
}
int main() {
int n, r, q;
cin >> n >> r >> q;
for (int i = 1; i <= 2 * n; i++) {
scanf("%d", &stu[i].score);
stu[i].order = i;
}
for (int i = 1; i <= 2 * n; i++) {
scanf("%d", &w[i]);
}
sort(stu + 1, stu + 1 + 2 * n, cmp);
for (int i = 0; i < r; i++) {
widx = lidx = 0;
for (int j = 1; j <= n; j++) {
if (w[stu[2 * j - 1].order] > w[stu[2 * j].order]) {
stu[2 * j - 1].score++;
win[++widx] = stu[2 * j - 1];
lose[++lidx] = stu[2 * j];
}
else {
stu[2 * j].score++;
win[++widx] = stu[2 * j];
lose[++lidx] = stu[2 * j-1];
}
}
merge();
}
cout << stu[q].order;
return 0;
}