自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

十二月的猫

十二月的寒冬阻挡不了春天的脚步,十二点的黑夜遮蔽不住黎明的曙光

  • 博客(220)
  • 收藏
  • 关注

原创 【2024年度总结】2024,一杯清茶,一缕余香,起起落落,十二月的猫总与你们在路上

很开心入围了,虽然只有87名,但也是一年来努力创作的被认可。年度评选我居然是看到报名通知才知道的,也没有想到自己能够入围。回想自己进入CSDN的初衷,那时的自己刚刚接触计算机,对这个领域并不了解,是CSDN带领我入门,并伴随我成长。如今的我,依旧在路上🚊🚊十二月的猫是我给自己取得名字。十二月预表苦难与困难,猫预表独立且骄傲。计算机这一条路,或者说人生这一条路,它不好走,所以我想让自己时刻明白其中的艰辛,鼓舞自己时刻做好准备。起起落落,有高光,有低谷,有失败,也有收获。

2025-01-21 22:28:11 2900 121

原创 【一篇搞定配置】CLion安装配置与使用(含编译乱码、Build失败等问题的解决)(附破解方法)

之前使用的一直是Visual Studio code来编辑运行C++代码,但是一直感觉Visual Studio code使用的非常难受,整体风格过于纷繁复杂。最重要的是配置需要编辑配置文件而不是傻瓜式可视化配置。也许有的程序员会喜欢Visual Studio code的配置方式,因为手动编辑配置文件来配置能够大大提高配置的自由程度。但是这对新手程序员非常不友好,并且和猫猫追求整洁、便捷的原则相冲突。于是,在一个夜黑风高的夜晚,猫猫决定卸载Visual Studio code来转投CLion!!!!!

2024-11-18 13:32:56 8214 124

原创 【深度学习基础】多任务学习(Multi-Task Learning)

多任务学习(Multi-task learning)是和单任务学习(single-task learning)相对的一种机器学习方法。在机器学习领域,标准的算法理论是一次学习一个任务,也就是系统的输出为实数的情况。复杂的学习问题先被分解成理论上独立的子问题,然后分别对每个子问题进行学习,最后通过对子问题学习结果的组合建立复杂问题的数学模型。多任务学习是一种联合学习,多个任务并行学习,结果相互影响。一次只学习一个任务(task),大部分的机器学习任务都属于单任务学习。

2024-09-26 13:36:58 14731 49

原创 【一篇搞定配置】MySQL安装与配置

MySQL 是瑞典的MySQL AB公司开发的一个可用于各种流行操作系统平台的关系数据库系统,它具有客户机/服务器体系结构的分布式数据库管理系统。MySQL 完全适用于网络,用其建造的数据库可在因特网上的任何地方访问,因此,可以和网络上任何地方的任何人共享数据库。MySQL具有功能强、使用简单、管理方便、运行速度快、可靠性高、安全保密性强等优点。MySQL用C和C++编写,它可以工作在许多平台(Unix,Linux,Windows)上,提供了针对不同编程语言(C,C++,JAVA等)的API函数;

2024-07-11 23:28:02 12692 38

原创 【经典算法】最短路径算法——Dijkstra

最短路径算法是图论中一类重要算法,其功能就如名字一样——求解点与点之间最短距离。首先,先让我们对最短路径算法有一个概观,看看都有哪些种类的最短路径算法,每一个种类中代表的算法又是什么。​从一个起点出发求解其到其他所有其他点的最短距离从所有点出发求解其到其他所有其他点的最短距离动态规划做出的结果在一次次循环中会发生改变;贪婪算法每次做出的结果(局部最优)就是全局最优,不会再发生改变迪杰斯特拉算法是由荷兰计算机科学家在1956年发现的算法,此算法使用类似广度优先搜索的方法解决了带权图的单源最短路径问题。

2024-06-06 20:23:22 9857 45

原创 【零基础入门】一篇弄懂tsv、csv、xls等文件类型区别及处理(python版)

考虑到进行机器学习、深度学习训练、预测时我们不免接触到许许多多的数据,而这些数据又以不同的格式存在(主要有csv、xls、tsv三种格式),所以本文就想来讲讲这三种格式数据的转化、阅读、处理

2024-04-03 13:20:37 12923 31

原创 【一篇搞定配置】小白安装labelimg常见问题及其原因(带知识点理解)

本文面向对象为YOLO计算机视觉领域的小白,内容为labelimg在window11系统下的环境配置的相关问题。本文旨在不仅仅讲如何操作解决问题,更要明白问题出现的内在原因以及为什么这样的操作能够解决这个问题。让阅读的人可以知其然并且知其所以然

2023-10-23 19:08:16 9737 46

原创 山东大学《Web数据管理》期末复习宝典【万字解析!】

Web数据管理技术涵盖爬虫(URL判重、分布式架构)、网页解析(正则、DOM、Scrapy)、数据抽取(包装器生成与评价指标)。文本处理包括分词(HMM)、表示方法(词袋、TF-IDF、Word2Vec)及分类模型(fastText、TextCNN)。图像处理涉及特征提取(颜色直方图、HOG/SIFT),大语言模型重点分析Token化技术。结合工具(Nutch、BeautifulSoup)实现全流程解决方案。

2025-06-12 22:01:19 370

原创 数据库精选题(四)(E-R模型)

上一讲数据库精选题(三)(SQL语言精选题)(按语句类型分类)-CSDN博客重点在于各类SQL语句的语法以及经典的题型(题型难点只在于查询语句),里面并没有涉及特别难的SQL语句。原因如下:一、各大院校应该不会出很难的SQL题目(我们学校出的就到这个难度的~~~);二、我个人想先把所有知识点过一遍,后续有时间把实验中难的SQL题目再做更新所以看上一讲,我希望大家把它看成一个SQL的基础知识复习,重点放在各类型语句的语法以及彼此之间的对比,重在广度而不是深度本讲我们来进入E-R模型设计。

2025-06-06 15:01:24 66 1

原创 山东大学《数据可视化》期末复习宝典

山东大学《数据可视化》期末复习

2025-06-06 14:51:51 1250 4

原创 【软件测试】第三章·软件测试基本方法(缺陷模式、模型、形式化测试方法)

本文介绍了软件测试的多种方法,包括基于缺陷模式的测试(预处理、词法分析、语法分析等步骤)、基于模型的测试(功能图法、状态迁移图等)以及基于形式化方法的测试(数学描述与验证)。文章强调这些方法作为传统测试的补充,重点讲解了模型测试中的功能图法如何结合黑盒与白盒方法设计测试用例。作者还分享了相关学习资源链接,并邀请读者点赞收藏以支持创作。全文以考试复习为导向,旨在帮助读者系统掌握软件测试知识体系。

2025-05-24 11:18:25 1308 8

原创 【软件测试】第三章·软件测试基本方法(逻辑覆盖、路径覆盖)

逻辑覆盖与路径覆盖是软件测试中两种核心白盒测试方法,主要用于验证程序内部逻辑的完整性。逻辑覆盖通过分析代码中的条件、分支等逻辑结构设计测试用例,涵盖语句覆盖(确保每条代码至少执行一次)、判定覆盖(验证每个逻辑判断的真假结果)及条件覆盖(覆盖子条件的所有可能取值)等层级,逐步提升测试深度。路径覆盖则更为严格,要求遍历程序所有可能的执行路径,尤其针对循环嵌套、多分支组合等复杂场景,能有效发现隐藏的逻辑漏洞。

2025-05-23 20:10:47 994 3

原创 【软件测试】第三章·软件测试基本方法(基于需求的测试方法)

文章首先回顾了软件缺陷的定义和分类,包括从产品内部和外部视角的缺陷理解,以及软件测试的不同分类方式。接着,详细阐述了多种软件测试方法,如基于直觉和经验的ALAC测试方法、错误猜测法、等价类划分方法、边界值分析方法、判定表法、因果图方法、Pairwise方法和正交实验法。每种方法都通过示例进行了说明。

2025-05-23 16:20:34 1713 43

原创 【软件项目管理】第一章·软件项目管理的基础概念

本章系统解析软件项目管理的核心内涵与基本框架,从项目定义、特征与生命周期入手,阐述软件项目管理的五大核心要素(范围、时间、成本、质量、风险)与关键流程(启动、规划、执行、监控、收尾)。通过对比传统项目管理,强调软件项目的独特性,如需求动态性、技术复杂性与团队协作挑战,并介绍敏捷开发、瀑布模型等主流方法论。旨在帮助读者建立科学的项目管理思维,掌握资源优化、风险控制与目标达成的实践逻辑,为后续章节的深入探讨奠定基础。

2025-05-15 09:52:23 1387 54

原创 【软件测试】第二章·软件测试的基本概念

文章首先介绍了软件质量的内涵和软件缺陷的定义、产生、构成及修复代价,然后详细讲解了软件测试的分类,包括静态测试与动态测试、主动测试与被动测试、黑盒测试与白盒测试等。接着,文章阐述了软件测试的四个层次:单元测试、集成测试、系统测试和验收测试,并介绍了软件测试的工作范畴,包括测试需求分析、测试策略制定、测试计划、测试设计、测试执行以及测试结果和过程评估。最后,文章总结了软件测试的重要性,并鼓励读者持续关注和学习相关领域的知识。

2025-05-14 20:57:44 1059 22

原创 【软件测试】第一章·软件测试概述

软件测试是软件开发过程中不可或缺的关键环节,旨在通过系统化的方法验证和评估软件产品是否符合预期需求,确保其质量、可靠性和性能。本章概述了软件测试的基本概念、目的和重要性。

2025-05-13 16:30:13 1156 51

原创 【全队项目】智能学术海报生成系统PosterGenius--Hooks机制与富文本处理技术

PosterGenius致力于开发一套依托DeepSeek技术的智能论文海报生成平台。该系统在AI自动化处理的核心框架下,支持用户个性化调整与内容优化。用户仅需上传PDF格式的学术论文,平台即可智能解析文献内容,并生成适配用户选定风格的学术海报。生成的海报不仅能精准提炼论文核心观点,还通过智能图文混排强化视觉表现力。为提升海报设计的多元性与专业性,系统融合多模态自优化机制,持续改进文本摘要与视觉元素的协同效果。

2025-05-05 11:03:44 889 23

原创 【全队项目】智能学术海报生成系统PosterGenius--前后端系统介绍

PosterGenius致力于开发一套依托DeepSeek技术的智能论文海报生成平台。该系统在AI自动化处理的核心框架下,支持用户个性化调整与内容优化。用户仅需上传PDF格式的学术论文,平台即可智能解析文献内容,并生成适配用户选定风格的学术海报。生成的海报不仅能精准提炼论文核心观点,还通过智能图文混排强化视觉表现力。为提升海报设计的多元性与专业性,系统融合多模态自优化机制,持续改进文本摘要与视觉元素的协同效果。定位:微软开发的 JavaScript 超集(在 JS 基础上扩展)。

2025-05-05 10:34:58 1446 53

原创 【全队项目】智能学术海报生成系统PosterGenius--图片布局生成模型LayoutPrompt(2)

猫猫不知道大家有没有思考过图片布局生成模型,这算是生成模型的一个非常小的子任务了。前面带大家学习过生成模型,包括GAN、Diffusion等。这些都算是生成模型的研究子领域,利用这些子领域的知识,我们可以来研究具体的任务,例如生成图片、按照语言提示生成图片、按照布局提示生成图片等。同样生成布局也是生成模型中的一个具体任务,其实思路也是非常简单。生成图片这个任务中更具体的任务是生成海报、生成照片、生成动漫图片等。因为直接生成一个海报难度太大,我们就先去生成布局,然后在具体布局的约束下去具体生成完整图片。

2025-05-03 11:23:15 1225 36

原创 【全队项目】智能学术海报生成系统PosterGenius--图片布局生成模型LayoutPrompt(1)

猫猫不知道大家有没有思考过图片布局生成模型,这算是生成模型的一个非常小的子任务了。前面带大家学习过生成模型,包括GAN、Diffusion等。这些都算是生成模型的研究子领域,利用这些子领域的知识,我们可以来研究具体的任务,例如生成图片、按照语言提示生成图片、按照布局提示生成图片等。同样生成布局也是生成模型中的一个具体任务,其实思路也是非常简单。生成图片这个任务中更具体的任务是生成海报、生成照片、生成动漫图片等。因为直接生成一个海报难度太大,我们就先去生成布局,然后在具体布局的约束下去具体生成完整图片。

2025-04-29 18:00:07 1481 57

原创 【玩转深度学习】手把手带你实战迁移学习

《玩转深度学习:手把手带你实战迁移学习》课程带你解锁AI高效开发新姿势!通过5大实战案例(图像识别、文本分类等),从零掌握迁移学习核心技巧:使用Alex等预训练模型,快速适配医疗影像分析、智能客服等场景;详解特征提取、模型微调、领域适配三大法宝,教你用PyTorch将预训练模型知识迁移到小数据集任务,训练效率提升10倍!助你轻松解决数据不足、算力有限的痛点,玩转AI模型复用的艺术。

2025-04-28 17:16:01 1318 58

原创 【零基础入门】一篇解释nn、nn.Module与nn.functional的用法与区别

这篇零基础教程深度解析PyTorch框架中nn、nn.Module与nn.functional的核心区别与用法,通过神经网络层构建、激活函数调用等20个实战案例,对比演示参数化层与函数式操作的实现差异。文章详解nn.Module类的继承机制、参数自动注册原理,剖析nn.functional在动态计算中的优势,并针对"何时用Module/functional"提供决策树,结合梯度计算可视化与模型部署实例,帮助初学者掌握网络模块化封装技巧,打通神经网络搭建的知识闭环。

2025-04-24 19:48:56 1292 66

原创 【零基础入门】一篇掌握Python中的字典(创建、访问、修改、字典方法)【详细版】

这篇零基础教程系统讲解Python字典的核心用法与实战技巧,从键值对数据结构的概念切入,结合生动的生活化类比,详解字典的创建、元素访问、动态修改及update()、get()等15种常用方法。通过商品管理系统、JSON数据解析等实战案例,剖析字典推导式、嵌套字典等进阶用法,并针对KeyError异常、哈希冲突等常见问题提供解决方案。配套交互式代码示例,帮助初学者快速掌握高效处理映射关系的核心技能,为爬虫开发、数据处理打下坚实基础。

2025-04-24 19:41:25 1129 55

原创 【零基础入门】一篇弄懂Tensor(张量)(呕心沥血版)

这篇零基础教程系统解析深度学习核心数据结构——张量(Tensor),从标量、向量、矩阵的维度升级讲起,结合PyTorch框架演示张量的创建、运算、形状变换及自动微分机制。通过可视化示意图和类比讲解,揭示张量在神经网络中的数据流动过程,详解广播机制、设备切换、与NumPy互操作等实战技巧,并针对形状不匹配、梯度计算等常见陷阱给出解决方案,帮助初学者快速掌握深度学习的"数据血液"运作原理,打好模型开发的地基。

2025-04-22 09:34:24 1771 57

原创 【玩转深度学习】手把手带你实战MNIST字体识别【LeNet网络】(PyTorch神经网络)

这篇实战指南将带领读者从零实现经典LeNet卷积神经网络,完成MNIST手写数字识别任务。文章详解LeNet的卷积-池化-全连接架构设计,结合PyTorch框架演示数据集加载、网络搭建、训练优化全流程,并可视化特征图与训练曲线。通过对比不同超参数对识别准确率的影响,读者不仅能掌握图像分类核心技能,还能深入理解卷积神经网络的工作原理。配套可运行的Jupyter代码,特别适合深度学习新手快速入门计算机视觉领域。

2025-04-21 10:31:47 1846 63

原创 【零基础入门】一文解释torch.normal()函数(全网最详细)

本篇文章详细讲解了torch.normal函数的使用,以及scatter函数中c,lw,s等参数的使用(全网最详细)

2025-04-16 20:08:02 1201 49

原创 【模块化编程】Python文件路径检查、跳转模块

这篇【模块化编程】文章将详细介绍如何在Python中高效管理文件路径,包括路径检查与目录跳转的实用模块化实现。你将学习使用os和pathlib模块进行路径存在性验证、相对/绝对路径转换,以及跨平台安全的目录切换操作。文章包含可复用的代码片段,演示如何封装路径操作为独立函数,处理常见异常情况,并优化文件系统交互流程。无论是自动化脚本开发还是大型项目管理,这些技巧都能显著提升代码的健壮性和可维护性。

2025-04-16 20:02:36 1288 67

原创 【深度学习的骨架与脉搏】语义分割的卷积神经网络·U-Net

这篇深度学习文章深入解析U-Net架构——语义分割领域的里程碑式卷积神经网络。文章从U-Net独特的对称编码器-解码器结构出发,详解其跳跃连接机制如何有效融合浅层细节与深层语义特征,实现像素级精准分割。通过剖析经典医学图像分割案例,展示U-Net在有限数据下表现优异的秘密,同时探讨其在工业检测、自动驾驶等领域的创新应用。读者将掌握U-Net的核心设计思想。

2025-04-14 10:56:28 1628 68

原创 【神经网络结构的组成】深入理解 转置卷积与转置卷积核

这篇深度学习基础文章将深入解析转置卷积(Transposed Convolution)的核心原理与应用。通过对比常规卷积操作,系统讲解转置卷积如何实现上采样和特征图尺寸扩大的数学机制,重点剖析转置卷积核的工作原理及其在语义分割、生成对抗网络(GAN)等任务中的关键作用。文章结合可视化示例,帮助读者直观理解其"逆向卷积"的本质,并探讨实际应用中可能遇到的棋盘效应等问题及解决方案,为掌握这一重要上采样技术提供理论基础和实践指导。

2025-04-14 07:59:10 1608 56

原创 【全队项目】智能学术海报生成系统PosterGenius--多智能体辩论

《智能学术海报生成系统PosterGenius:多智能体辩论》提出了一种基于多智能体协作辩论的学术海报自动化生成框架。该系统通过模拟学术专家辩论机制,将用户输入的研究内容(如论文、数据)解构为文本、图表与设计元素,利用大语言模型(LLM)驱动多个智能体角色进行动态辩论与协同优化,最终生成输入论文逻辑清晰的内容提炼工作。

2025-04-12 10:11:09 1223 55

原创 【深度学习基础】ImageNet数据集介绍、下载与可视化(呕心沥血版)

平常大家最常用的一个数据集就是ImageNet数据集,虽然我们在使用,但是又有多少猫友真正的去了解过它,去下载并可视化这个数据集原初的面貌呢?我相信没有很多人真的去这样做了,也许是觉得浪费时间也许是从前没有仔细去想了解过。但无论如何,猫猫今天都将带你看看ImageNet的前世今生🥰。

2025-04-10 09:02:34 2523 30

原创 【深度学习基础】一篇带你入门计算机视觉(从计算机视觉任务出发)

本文从核心任务切入,系统解析图像分类、目标检测、图像分割和生成式视觉四大方向。文章以ResNet、YOLO、U-Net和GAN等经典模型为脉络,详解卷积神经网络、注意力机制等技术原理,并结合PyTorch实战项目演示算法实现。通过医疗影像分析、自动驾驶等案例,串联数据预处理、模型训练与部署全流程,为零基础读者提供从理论到实战的完整学习路径,助力快速构建计算机视觉知识体系。

2025-04-09 19:24:51 2491 56

原创 【配置后的使用】Git从 0 到 1 全指南【万字保姆级教程】

本文为零基础开发者量身打造Git全流程实战指南,通过渐进式教学拆解版本控制核心逻辑。从环境配置到仓库管理,详解commit、branch、merge等高频命令的底层原理与协作场景应用,结合命令行演示与图形化工具对比,破解版本回退、冲突解决等痛点问题。教程配备本地练习项目与可视化操作图谱,助读者跨越“只会clone/push”的入门阶段,真正掌握分布式开发的团队协作范式,实现代码管理能力的系统性升级。

2025-04-07 12:45:49 2145 46

原创 【零基础入门】从PyTorch计算机看反向传播(求梯度/求导)

PyTorch的自动求导(autograd)通过动态计算图实现梯度计算。计算图将张量(Tensor)的运算过程记录为节点与边,每一步操作(如加减乘除)都会构建图结构。调用backward()时,系统从输出节点反向遍历计算图,利用链式法则逐层计算梯度,并存储在对应张量的.grad属性中。autograd模块自动管理中间变量,无需手动推导公式。通过requires_grad=True开启跟踪,结合with torch.no_grad()可灵活控制求导范围。这种机制让神经网络的训练变得高效且直观。

2025-04-03 10:49:51 1478 45

原创 【深度学习的灵魂】生成对抗网络·GAN

生成对抗网络(GAN)由“生成器”和“判别器”组成,像一场真假博弈。生成器(造假高手)负责生成逼真数据(如图像),判别器(鉴定专家)则努力分辨数据是真实还是生成。两者不断对抗:生成器优化造假技术,判别器提升鉴别能力。最终,生成器能产出以假乱真的数据,而判别器无法区分真假。GAN凭借这种对抗训练,广泛应用于图像生成、风格迁移等领域,成为AI创作的核心技术之一。

2025-04-03 09:44:08 1688 48

原创 【一篇搞定配置】保姆级带你Git安装与配置(图文解释)(附中文乱码解决)

本文聚焦版本控制系统初始部署阶段,提供跨平台环境适配的端到端指导方案。通过标准化安装流程解析与运行时依赖预检机制,系统规避常见环境变量缺失、权限冲突等部署陷阱。方案内置多版本管理策略与系统兼容性验证模块,确保从核心组件安装到基础功能验证的全链路覆盖。特别设计环境健康度自检工具,自动生成部署质量报告,为后续开发流程奠定可靠基础。本指南实现从安装包下载到可执行环境就绪的完整交付闭环,显著降低工具链初始化门槛。

2025-04-02 12:57:17 2566 40

原创 【全队项目】智能学术海报生成系统PosterGenius--风格个性化调整

PosterGenius智能学术海报系统突破传统设计限制,首创"自然语言驱动"的风格个性化模块。用户只需输入论文摘要并描述需求(如"突出生物医学元素"或"增加科技感线条"),系统即可自动解析内容逻辑,智能匹配学科专属视觉风格。通过三大AI模型的深度协作——文本理解精准提取关键词、动态布局引擎优化图表权重、跨模态技术将文字描述转化为设计元素,实现从配色纹理到版式细节的全维度风格定制。实测表明,该系统能在保证学术严谨性的前提下,10秒生成兼具专业规范与个人创意的可编辑海报,真正实现"所想即所得"。

2025-03-31 20:18:11 1854 56

原创 【玩转深度学习】手把手带你实战RNN与LSTM(附完整代码和数据)

在深度学习领域,循环神经网络(RNN)和长短期记忆网络(LSTM)作为处理序列数据的经典模型,已经在自然语言处理、语音识别、时间序列预测等多个领域取得了显著成果。随着人工智能技术的不断发展,理解并掌握这些模型的核心原理和应用变得尤为重要。本文将手把手带你深入探讨RNN和LSTM的工作原理,帮助你掌握如何使用这些网络模型解决实际问题。通过详细的代码示例和数据集,我们将带你一步一步完成模型的构建、训练和优化。无论你是深度学习的初学者,还是有一定经验的开发者,本篇文章都将为你提供实践操作的机会,帮助你更好地理解

2025-03-26 08:23:01 1470 73

原创 AI驱动的代码自动化:腾讯云大模型知识引擎 × DeepSeek提供全新视角

 DeepSeek结合腾讯云大模型知识引擎,能够理解代码的结构与业务逻辑。在自动化代码生成时,它不仅仅是在执行简单的模板填充,而是能够理解开发者意图,通过自然语言和编程语言之间的转换生成符合要求的高效代码。例如,我们只需要描述需求,AI就能根据大模型的深度理解能力,生成符合规范、可复用的代码结构,这在传统的自动化工具中是很难实现的。

2025-03-24 19:10:56 1868 44

原创 【人工智能入门必看,避免走弯路】十二月的猫切身经历,从理论到实践的全指南

本文为AI初学者扫除认知盲区,十二月的猫以亲身踩坑经验梳理从理论到实战的捷径。详解机器学习基础、神经网络架构、主流框架对比三大核心模块,剖析图像分类与文本生成两大典型任务的代码实操陷阱。提供开源工具链配置清单、论文精读方法论及模型调试Checklist,直击数据预处理不规范、过拟合诊断缺失等高频痛点。文章总结20+个“后悔没早知道的”实践技巧,助你绕开盲目调参、忽视数学基础等常见误区,建立系统化学习路径,缩短3-6个月摸索期。

2025-03-24 12:29:23 264 41

《深度学习理论直觉三十讲》专栏使用数据集 【玩转深度学习】搭建简易神经翻译机

《深度学习理论直觉三十讲》专栏使用数据集 【玩转深度学习】搭建简易神经翻译机

2025-03-23

猫狗识别项目(包含源代码和数据集)

猫狗识别项目旨在通过深度学习技术,构建一个能够自动识别猫和狗的分类模型。该项目使用卷积神经网络(CNN)对输入的图像进行训练和分类,将图像分为猫或狗两类。项目的核心在于通过大量标注好的猫狗图像数据集进行模型训练,从而让模型能够提取图像中的特征(如毛发、耳朵形状等)并做出准确预测。 项目步骤包括数据集准备、图像预处理、模型选择与训练、评估与优化等。首先,通过收集包含猫和狗的图像数据集,并进行数据清洗和增强,以提高模型的鲁棒性。接着,使用CNN模型进行训练,并通过交叉验证优化超参数,提升识别准确率。最后,通过评估模型在测试集上的表现,确保其具有较高的分类精度。 该项目不仅展示了深度学习在图像识别中的应用,也为其他类似的图像分类任务提供了可行的解决方案。

2025-02-11

项目6迁移学习数据集(猫狗数据集)

本数据集用于专栏https://blog.csdn.net/m0_67656158/category_12886278.html?spm=1001.2014.3001.5482中的【项目6】使用 里面包含上千张猫、狗的图片可用于训练视觉模型

2025-02-11

山东大学软件学院操作系统课程设计(代码+报告)

给山东大学软件学院学弟学妹们使用

2025-01-31

山东大学软件学院计算机网络期末复习(附往年题)

给山东大学软件学院学弟学妹们使用

2025-01-31

山东大学软件学院数字图像处理实验(完整代码+报告)

给山东大学软件学院的学弟学妹们使用

2025-01-31

山东大学软件学院大一上高级程序设计语言实验(完整代码,可直接运行)

给山东大学软件学院学弟学妹们使用

2025-01-31

山东大学软件学院编译原理实验-PL0编译器

给山东大学软件学院学弟学妹们使用

2025-01-31

山东大学软件学院大一上高级程序设计语言复习资料(附往年题)

给山东大学软件学院的学弟学妹们使用

2025-01-31

【javaWeb技术】专栏专用脚手架

本专栏的后续所有项目开发都将基于这个脚手架进行 一个为 Java Web 开发者精心设计的高效工具集。这个脚手架旨在加速您的项目启动和开发流程,提供了一系列常用功能和最佳实践的集成方案,帮助您快速构建、部署和维护高质量的 Web 应用程序。 主要特点: 预配置环境:内置了常用的开发工具和框架,包括 Spring Boot、Hibernate、MyBatis 等,简化了环境配置步骤。 模板项目:提供了一些典型的项目模板和示例代码,帮助您快速理解和应用最佳开发实践。 代码生成器:自动生成基础代码和配置文件,减少了重复劳动,提高了开发效率。 集成测试支持:包含了用于单元测试和集成测试的工具和示例,确保应用程序的质量和稳定性。 自动化构建:配置了 Maven 或 Gradle 构建工具,支持自动化构建和持续集成,简化了构建和部署流程。 无论您是刚入门 Java Web 开发的新人,还是经验丰富的开发者,这个脚手架都将为您提供强大的支持,助力您高效开发和维护Web 应用程序。通过利用【JavaWeb技术】专栏专用脚手架,您可以专注于业务逻辑的实现,而不是繁琐的配置和重复性工作。

2024-08-09

山东大学软件学院大一下高级程序设计(源码+数据)

这是山东大学软件学院友友们遇到的第一个很恶心的课。由于我们刚刚学完java基础,学校上来就让我们写前后端开发项目,实在过于难了。所以这个项目花费了我大量的时间。所幸结果也是不错:我个人得了100,小组内所有成员都是优秀 这个项目前端采用javaFX编写,后端采用Springboot; u1s1李学庆老师的Springboot框架是有点问题的,它的server端是并没有用起来,而是把所有东西都挤在controller上,不过也是可以运行的【捂脸】【捂脸】 前期大家可以先把Springboot的结构看懂,然后采用复制黏贴的方式来修改部分代码就行。后面项目做多了自然就明白了。不要着急

2024-07-08

山东大学操作系统 实验1-实验7(都是可以运行且没有错误的实验代码)

其实山东大学操作系统实验的难度是非常大的。如果从头到尾一个一个把实验完整的敲完,能够让我们对操作系统知识点的理解以及具体实践工程的理解上一个层次。但是问题在于,学校给的示例代码是存在问题的,实验中又有很多知识点是平常上课没有讲过的;就算上课讲过也仅仅涉及知识点,实操和知识点之间还是存在很大间隔的。 于是有一个标准的答案就显得非常重要,本系列就是一个标准的代码答案,是本人一一调试修改出来的。在里面花费了许多的心血。最终也是每一个实验都完美完成,同时也想说CSDN文章上面很多的代码都是存在问题的,大家平常在参考的时候一定要小心。强烈建议直接看我的哈哈哈哈哈哈哈

2024-07-08

山东大学众智实验(实验报告+实验代码+思政报告)

山东大学每年的众智实验内容是差不多的,所以这里就直接给大家准备好了!!!实验报告+实验代码+思政报告,还有比这更全的吗?嘻嘻 实验内容包括五个题目: 1、友谊悖论验证 2、谢林模型模拟 3、Pagerank算法和六度空间 4、从知晓到行动的模拟 5、表决问题

2024-07-08

山东大学软件学院计算机组成原理课程设计整体图+指令集+ROMRAM文件

山东大学软件学院计算机组成原理课程设计是我山软件学院最恶心的课程设计,没有之一!!!!这一个整机图是完整且可以运行的,同时我也附上了我们的指令集以及最后写入内存的ROM/RAM数据。 在2024年度计算机组成原理课程设计中本人是优秀,也就是A的成绩 但是这个是存在缺陷的。我们今年要求的是实现寻址方式,我这边实现的是伪寻址方式。所以是存在比较大的问题的。直到最后验收的时候才知道这种寻址方式是伪寻址,但是由于回答问题也不错,老师宽容,给了优 大家拿过去一定需要修复一下这个地方,其实也容易修改,我这边是没时间改了 祝学弟学妹们都能取得好成绩呀~~

2024-07-08

山东大学软件学院软件工程专业面向对象技术PPT+练习题(包括往年题)

包括专项练习题+山东大学期末往年题 本人就是使用这一套练习题,在2024年度面向对象技术期末考试中取得96的成绩 只要大家使用这套练习题和往年题,仔仔细细做一遍期末考试成绩不会差 里面的大部分题目都有参考答案。同时我也对部分的试题写了CSDN解析,如果有需要的话可以去我的个人主页进行查看 在做题目之前我强烈建议大家看一遍我个人主页中对于面向对象技术基础知识的四篇讲解文章。对于设计模式我也将在后续更新 祝学弟学妹们都能取得好成绩呀~~

2024-07-08

山东大学数据结构课程设计-学生成绩分析平台

山东大学大二上寒假的数据结构课程设计,大二下开学上交 我选择的题目是34题——学生成绩分析平台 这个题目是里面最难的题目了,其他题目仅仅需要设计一个算法,或者简单有一个UI设计,本题需要开发一个完整的WEB服务,所以难度是最大的,也是最花时间的。 我的这个项目前端采用Eova框架(一个封装程度很高的框架);后端采用Springboot框架。 功能实现的相对比较完善,最终评分是班级第一。 这是一个基于数据结构课程设计的学生成绩分析平台,旨在帮助用户有效管理和分析学生的学术成绩数据。以下是该平台的一些关键特点和功能描述: 成绩管理: 允许用户录入、修改和删除学生的各类成绩信息,如考试成绩、作业成绩等。 支持批量导入和导出成绩数据,方便批量操作和备份。 成绩分析: 提供多种成绩统计分析功能,如平均分、最高分、最低分、标准差等。 可以生成学生个人和班级整体的成绩报表和图表,帮助用户直观了解成绩分布和趋势。 数据结构应用: 使用数据结构(如数组、链表、树等)来组织和存储成绩数据,保证数据的高效管理和检索。实现算法来支持快速的成绩查询和排序功能,提升平台的响应速度和用户体验。

2024-07-08

山东大学软件学院软件工程专业数据库期末复习题

包括专项练习题+山东大学期末往年题 本人就是使用这一套练习题,在2024年度期末考试中取得97的数据库成绩 只要大家使用这套练习题和往年题,仔仔细细做一遍期末考试成绩不会差 里面的大部分题目都有参考答案。同时我也对部分的试题写了CSDN解析,如果有需要的话可以去我的个人主页进行查看 祝学弟学妹们都能取得好成绩呀~~

2024-07-08

山东大学软件学院马克思主义原理期末往年题

包括专项练习题+山东大学期末往年题 本人就是使用这一套练习题,在2024年度马克思主义原理期末考试中取得92的成绩 只要大家使用这套练习题和往年题,仔仔细细做一遍期末考试成绩不会差 祝学弟学妹们都能取得好成绩呀~~

2024-07-08

山东大学软件学院软件工程专业操作系统期末复习题

包括专项练习题+山东大学期末往年题 本人就是使用这一套练习题,在2024年度期末考试中取得97的操作系统成绩 只要大家使用这套练习题和往年题,仔仔细细做一遍期末考试成绩不会差 里面的大部分题目都有参考答案。同时我也对部分的试题写了CSDN解析,如果有需要的话可以去我的个人主页进行查看 祝学弟学妹们都能取得好成绩呀~~

2024-07-08

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除