线性同余方程

一.一元线性同余方程
形如 ax=b(mod m),a,b,为整数,m为正整数,x为未知数的同余式称为一元线性同余方程。
方程可以变形为:ax+my=c (1)
而对于方程 ax+by=(a,b) (2)是一定有解的。
因此可以把方程(1)转化为方程(2)求解。
利用拓展欧几里得算法,解出方程(2)的解,利用常数项的比例关系,可以推出方程(1)的解。
方程(1)有解的充要条件为 c%gcd(a,m)==0
利用通解x=x0+k*(b/gcd),y=y0-k*(a/gcd),可以求出其他解。
代码:

ll _gcd(ll a,ll b,ll &x,ll &y)
{
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    ll ans=_gcd(b,a%b,x,y);
    ll tmp=x;
    x=y;
    y=tmp-(a/b)*y;
    return ans;
}
ll extend_gcd(ll a,ll b,ll c)
{
    ll x,y;
    ll gcd=_gcd(a,b,x,y);
    if(c%gcd)
        return -1;
    x=x*c/gcd;
    x%=b;
    for(int i=1;i<=gcd;i++)//方程所有解
        ans[i]=(x+(i-1)*(b/gcd))%b;
}

题目:
poj 1061 2115 2142
二.一元线性同余方程组
先看一篇博客
对于模线性方程组,可以进行两两合并,求出方程的最终解。
通解x=x0+k*lcm,x0为最小非负解
代码:poj 2891 (最小正整数解)

#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll;
ll a1,a2,r1,r2;
int k;
ll _gcd(ll a,ll b,ll &x,ll &y)
{
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    ll ans=_gcd(b,a%b,x,y);
    ll tmp=x;
    x=y;
    y=tmp-(a/b)*y;
    return ans;
}
int main()
{
    while(scanf("%d",&k)!=EOF)
    {
        scanf("%lld%lld",&a1,&r1);
        bool flag=1;
        for(int i=1;i<k;i++)
        {
            scanf("%lld%lld",&a2,&r2);
            ll c=r2-r1;
            ll x,y;
            ll gcd=_gcd(a1,a2,x,y);
            if(c%gcd)//无解
                flag=0;
            ll t=a2/gcd;
            x=(x*(c/gcd)%t+t)%t;//t范围内的最小整数解
            r1=a1*x+r1;//!!!!!
            a1=a1*(a2/gcd);//!!!!!!
        }
        if(flag)
            printf("%lld\n",r1);
        else
            printf("-1\n");
    }
    return 0;
}

hdu 1573
求一定范围内的解的个数

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
int a[12],b[12];
ll n;
int m;
int _gcd(int a,int b,int &x,int &y)
{
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    int ans=_gcd(b,a%b,x,y);
    int tmp=x;
    x=y;
    y=tmp-(a/b)*y;
    return ans;
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%lld%d",&n,&m);
        memset(a,0,sizeof(a));
        memset(b,0,sizeof(b));
        for(int i=1;i<=m;i++)
            scanf("%d",&a[i]);
        for(int i=1;i<=m;i++)
            scanf("%d",&b[i]);
        int a1=a[1],a2=0,r1=b[1],r2=0,gcd=1;
        bool flag=1;
        for(int i=2;i<=m;i++)
        {
            a2=a[i];
            r2=b[i];
            int x,y,c=r2-r1;
            gcd=_gcd(a1,a2,x,y);
            if(c%gcd)
            {
                flag=0;
                break;
            }
            int t=a2/gcd;
            x=(x*(c/gcd)%t+t)%t;
            r1=a1*x+r1;
            a1=a1*(a2/gcd);
        }
        if(!flag)
            printf("0\n");
        else
        {
            int yy=a[1];
            for(int i=2;i<=m;i++)
                yy=yy*a[i]/__gcd(yy,a[i]);//printf("yy=%d\n",yy);
            int cnt=0;
            ll x=r1;
            while(x<=n)
            {
                cnt++;
                x+=yy;//每次加a数组的最小公倍数
            }
            if(r1==0)//坑点:题目要求为正整数
                cnt--;
            printf("%d\n",cnt);
        }
    }
    return 0;
}

hdu3579
输出最小正整数解

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int m[10],a[10];
int _gcd(int a,int b,int &x,int &y)
{
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    int ans=_gcd(b,a%b,x,y);
    int tmp=x;
    x=y;
    y=tmp-(a/b)*y;
    return ans;
}
int main()
{
    int t,cnt=0;
    scanf("%d",&t);
    while(t--)
    {
        cnt++;
        memset(m,0,sizeof(m));
        memset(a,0,sizeof(a));
        int n;
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
            scanf("%d",&m[i]);
        for(int i=1;i<=n;i++)
            scanf("%d",&a[i]);
        int m1=m[1],m2=0,a1=a[1],a2=0;
        bool flag=1;
        for(int i=2;i<=n;i++)
        {
            m2=m[i];
            a2=a[i];
            int c=a2-a1;
            int x,y;
            int gcd=_gcd(m1,m2,x,y);
            if(c%gcd)
            {
                flag=0;
                break;
            }
            int t=m2/gcd;
            x=(x*(c/gcd)%t+t)%t;
            a1=m1*x+a1;
            m1=m1*(m2/gcd);
        }
        if(a1==0)
        {//output the least positive integer(小心坑)
            int lcm=m[1];
            for(int i=2;i<=n;i++)
                lcm=lcm*m[i]/__gcd(lcm,m[i]);
            a1+=lcm;
        }
        printf("Case %d: ",cnt);
        if(flag)
            printf("%d\n",a1);
        else
            printf("-1\n");
    }
    return 0;
}

三.多元线性同余方程组

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值