深度学习
文章平均质量分 93
sihuachun
这个作者很懒,什么都没留下…
展开
-
深度神经网络(DNN)的正则化
\quad\;\;和普通的机器学习算法一样,DNN也会遇到过拟合的问题,需要考虑泛化,这里我们就对DNN的正则化方法做一个总结。1. DNN的L1&L2正则化 \quad\;\;想到正则化,我们首先想到的就是L1正则化和L2正则化。L1正则化和L2正则化原理类似,这里重点讲述DNN的L2正则化。 \quad\;\;而DNN的L2正则化通常的做法是只针对与线性系数矩阵WWW,而不针对偏倚系数bbb。利用我们之前的机器学习的知识,我们很容易可以写出DNN的L2正则化的损失函数。转载 2022-05-28 17:36:43 · 415 阅读 · 0 评论 -
深度神经网络(DNN)损失函数和激活函数的选择
\quad\;\;在深度神经网络(DNN)反向传播算法(BP)中,我们对DNN的前向反向传播算法的使用做了总结。里面使用的损失函数是均方差,而激活函数是Sigmoid。实际上DNN可以使用的损失函数和激活函数不少。这些损失函数和激活函数如何选择呢?下面我们就对DNN损失函数和激活函数的选择做一个总结。1. 均方差损失函数+Sigmoid激活函数的问题 \quad\;\;在讲反向传播算法时,我们用均方差损失函数和Sigmoid激活函数做了实例,首先我们就来看看均方差+Sigmoid的组合有什转载 2022-05-27 18:52:44 · 507 阅读 · 0 评论 -
深度神经网络(DNN)反向传播算法(BP)
\quad\;\;在深度神经网络(DNN)模型与前向传播算法中,我们对DNN的模型和前向传播算法做了总结,这里我们更进一步,对DNN的反向传播算法(Back Propagation,BP)做一个总结。1. DNN反向传播算法要解决的问题 \quad\;\; 在了解DNN的反向传播算法前,我们先要知道DNN反向传播算法要解决的问题,也就是说,什么时候我们需要这个反向传播算法? \quad\;\; 回到我们监督学习的一般问题,假设我们有m个训练样本:{(x1,y1),(x2,y2),.转载 2022-05-27 16:35:18 · 535 阅读 · 0 评论 -
深度神经网络模型(DNN)与前向传播算法
\quad\;\;深度神经网络(Deep Neural Networks, 以下简称DNN)是深度学习的基础,而要理解DNN,首先我们要理解DNN模型,下面我们就对DNN的模型与前向传播算法做一个总结。1. 从感知机到神经网络 \quad\;\;在感知机原理小结中,我们介绍过感知机的模型,它是一个有若干输入和一个输出的模型,如下图: \quad\;\;输出和输入之间学习到一个线性关系,得到中间输出结果:z=∑i=1mwixi+bz=\sum\limits_{i=1}^mw_ix转载 2022-05-27 11:35:17 · 3173 阅读 · 0 评论