/* 问题描述
有n个人围成一圈,顺序排号(编号为1到n)。从第1个人开始报数(从1到3报数),凡报到3的人退出圈子。从下一个人开始继续报数,直到剩下最后一个人,游戏结束。
问最后留下的是原来第几号的那位。
举个例子,8个人围成一圈:
1 2 3 4 5 6 7 8
第1次报数之后,3退出,剩下:
1 2 4 5 6 7 8 (现在从4开始报数)
第2次报数之后,6退出,剩下:
1 2 4 5 7 8 (现在从7开始报数)
第3次报数之后,1退出,剩下:
2 4 5 7 8 (现在从2开始报数)
第4次报数之后,5退出,剩下:
2 4 7 8 (现在从7开始报数)
第5次报数之后,2退出,剩下:
4 7 8 (现在从4开始报数)
第6次报数之后,8退出,剩下:
4 7 (现在从4开始报数)
最后一次报数之后,4退出,剩下:
7.
所以,最后留下来的人编号是7。
输入格式
一个正整数n,(1<n<10000)
输出格式
一个正整数,最后留下来的那个人的编号。
样例输入
8
样例输出
7
数据规模和约定
对于100%的数据,1<n<10000。*/
#include <stdio.h>
#include <stdlib.h>
int q_zh(int n,int sz[][2]);
void init(int,int[][2]);
int main(void)
{
int n;
scanf("%d",&n);
int sz[n][2];
init(n,sz);
printf("%d",q_zh(n,sz));
return 0;
}
int q_zh(int n,int sz[][2])
{
int dq = 0,js = 0;
while(sz[dq][1] != dq)
{
js++;
if(js == 3)
{
js = 0;
sz[sz[dq][0]][1] = sz[dq][1];
sz[sz[dq][1]][0] = sz[dq][0];
js = 0;
}
dq = sz[dq][1];
}
return dq+1;
}
void init(int n,int sz[][2])
{
int i;
for(i = 0;i < n;i++)
{
sz[i][0] = (i-1+n)%n;
sz[i][1] = (i+1)%n;
}
}