八皇后问题——递归解法

八皇后问题

解决思路:

  1. 定义一个一维数组 queue[] 用于存放各个皇后的位置(由于每一行只能放一个皇后,因此第 n 个皇后存放于数组下标为n-1的行)

  2. 依次将 8 个皇后放入棋盘,首先将第 1 个皇后放到第一行第一列,判断是否有冲突,若有冲突,则将第一个皇后向右边移动一列,若没冲突,则使用递归放入第 2 个皇后,接着判断前面的皇后是否有冲突,有冲突则向右移动一列,没冲突则依照放入第1、2个皇后的步骤继续放入剩下的皇后,当即将要放入的皇后的个数大于需要放入的皇后的个数时,输出queue数组中存放的值(即满足8皇后问题的各个皇后的 y 坐标的值),终止本次递归。

  3. 代码实现如下(共有92种放法):

public class Queue8 {

	// 皇后的个数
    int max = 8;

	// 第 n+1 个皇后存放位置的列值(行值为数组下标)
    int queue[] = new int[max];

	// 满足8皇后问题的有多少种放法
    private static int num=0;

    public static void main(String[] args) {
        Queue8 queue8=new Queue8();
        queue8.check(0);
        System.out.println(num);
    }


    /**
     * 放入第 n+1 个皇后 (使用下标为0 的数组存放第 1 个皇后的位置)
     * @param n
     * @return
     */
    public void check(int n){
        if (n==max){
            for (int i = 0; i < queue.length; i++) {
                System.out.print(queue[i]+" ");
            }
            num++;
            System.out.println();
            return ;
        }

        for (int i = 0; i < max ; i++) {
            queue[n] = i;
            if (isLegal(n)){
                check(n+1);
            }
        }

    }

    /**
     * 判断放入第 n+1 个皇后是否和前面的n个皇后冲突
     * @param n
     * @return
     */
    public boolean isLegal(int n){

        for (int i = 0; i < n; i++) {
            if (queue[n] == queue[i] || Math.abs(queue[n] - queue[i])== Math.abs(n-i)){
                return false;
            }
        }
        return true;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值