文章目录
edgeR exactTest VS glmLRT VS QL
design <- model.matrix(~Subject+Treat)#设计一个实验设计矩阵
fit <- glmFit(y, design)#构建一个基因表达值得广义线性模型
lrt <- glmLRT(fit)#通过似然比检验得到最后的结果
-
GLM model
quasi-likelihood (QL)
The NB model can be extended with quasi-likelihood (QL) methods
F-test glmQLFit() and glmQLFTest()
likelihood ratio test
Dispersion
reference
- https://en.wikipedia.org/wiki/Statistical_dispersion wiki 统计上的离差
- https://support.bioconductor.org/p/75970/ edgeR 的离差
- https://support.bioconductor.org/p/50447/
Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range
edgeR fold changes
glmtreat
- https://support.bioconductor.org/p/70361/#70368
- https://support.bioconductor.org/p/65635/
- https://support.bioconductor.org/p/79444/
intercept and edgeR
https://support.bioconductor.org/p/78693/
https://support.bioconductor.org/p/78693/
Design matrix not of full rank
https://support.bioconductor.org/p/80408/
Reference
- https://support.bioconductor.org/p/86375/ QL method avoid type I error OR low counts and/or large dispersions,
- https://blog.csdn.net/hzau_yang/article/details/78118257 edgeR 的使用
- https://support.bioconductor.org/p/84291/ exact test or QLF test
- https://blog.csdn.net/chenzeyu110/article/details/53265315 edgeR 的使用
- https://www.jianshu.com/p/a9d5065f82a6 normalization
https://support.bioconductor.org/p/84338/
https://support.bioconductor.org/p/84291/#84292
RUVseq
- using normalized counts or raw counts for ruvg
How to show both edgeR and deseq2 results in a single volcano plot; highliting overlaps
https://www.biostars.org/p/314123/