2018-9-30

edgeR exactTest VS glmLRT VS QL

design <- model.matrix(~Subject+Treat)#设计一个实验设计矩阵
fit <- glmFit(y, design)#构建一个基因表达值得广义线性模型
lrt <- glmLRT(fit)#通过似然比检验得到最后的结果
  1. GLM model
    quasi-likelihood (QL)
    The NB model can be extended with quasi-likelihood (QL) methods

F-test glmQLFit() and glmQLFTest()

likelihood ratio test

Dispersion

reference

  1. https://en.wikipedia.org/wiki/Statistical_dispersion wiki 统计上的离差
  2. https://support.bioconductor.org/p/75970/ edgeR 的离差
  3. https://support.bioconductor.org/p/50447/

Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range

edgeR fold changes

glmtreat

  1. https://support.bioconductor.org/p/70361/#70368
  2. https://support.bioconductor.org/p/65635/
  3. https://support.bioconductor.org/p/79444/

intercept and edgeR

https://support.bioconductor.org/p/78693/
https://support.bioconductor.org/p/78693/

Design matrix not of full rank

https://support.bioconductor.org/p/80408/

Reference

  1. https://support.bioconductor.org/p/86375/ QL method avoid type I error OR low counts and/or large dispersions,
  2. https://blog.csdn.net/hzau_yang/article/details/78118257 edgeR 的使用
  3. https://support.bioconductor.org/p/84291/ exact test or QLF test
  4. https://blog.csdn.net/chenzeyu110/article/details/53265315 edgeR 的使用
  5. https://www.jianshu.com/p/a9d5065f82a6 normalization

https://support.bioconductor.org/p/84338/
https://support.bioconductor.org/p/84291/#84292

RUVseq

  1. using normalized counts or raw counts for ruvg

How to show both edgeR and deseq2 results in a single volcano plot; highliting overlaps
https://www.biostars.org/p/314123/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值