有限元学习心得(一)

自学了长达一个月的有限元,我这榆木脑瓜终于开窍了!怀着喜悦的心情分享一下学习心得:
我是按照有限元初级入门书 A First Course in Finite Elements 进行的学习。因此下面的总结中,用的图与公式都是书中的。
本次总结一下有限元一维问题:
就我看来,有限元方法就是为了求解微分方程的,因为微分方程的解太多了,用有限元方法就能找出符合微分方程的解,注意,是符合微分方程的解哦。
首先对一维的问题进行描述:

在这里插入图片描述
上图为一受力的杆状物,根据力的平衡得到其微分方程表达式(a),(b)与©分别为natural boundary conditions 与essential boundary conditions,至于为何叫这个名字之后再解释。
在这里插入图片描述
其实上式只能代表这一种问题的描述,因为边界条件不可能只是这么固定,还有可能做一下交换,所以更为广泛的问题描述与边界条件施加为:
在这里插入图片描述
仔细观察上式,解u(x)是非常复杂的,因为它在式中求了两次导数,因此对于要求这种复杂解的方程,称之为强形式(strong form)。起初我也被这样硬核的叫法吓到了。
既然这样的形式不好求解,那么就想,能不能有一种很简单的solution,使他满足强形式呢?
书中给出了找出这种解的方法,即对解的要求弱一些,即求出weak form,弱形式首先第一步,给强形式换一种表达形式,
在这里插入图片描述

给强形式乘一个权重函数(weight function)w,再进行积分等于零。因为w的任意性(且w(l)=0),保证了内部强形式也满足等于0的条件。上面给出了natural boundary condition, 一开始我很奇怪,essential boundary condition 去哪里了。原来这里假设,求出来的u(x)都满足essential boundary condition。这我还能说什么呢。
第二部,分部积分,为什么要分部积分呢,一开始强形式是因为要求二阶可导,也就是一阶导连续,这对solution的要求太高了,应用分部积分,使得方程中的solution解的形式弱一些。
由此得到以下方程式,这就是要求得的弱形式。
在这里插入图片描述
仔细观察,在弱形式中我们通过提高对权重函数w的要求来提高对solution解的要求。由强形式中要求解一阶导连续降为在弱形式中解有一阶导就可以了,注意,在弱形式得出的解中仍旧有一个非常重要的条件
u(l) = u(上面有一横)
这是为了满足essential boundary condition的,w(l)=0与natural boundary condition已经用在了弱形式中。

求得弱形式是有限元求解微分方程中非常重要的一步。可是到这里着实看不出弱形式与有限元有什么关系。

下面另起一个头,说一下有限元是怎么回事。
假设我们要分析一个杆的受力状态,如果要准确的分析,那就是求出杆上每个点的位移咯。(在力学中的求解就是求解位移,根据位移方程求解应力)但是求解每个点谈何同意,因为不论什么物体,它都有无数个点啊,要把每个点都求出来只是活在梦里罢了。所以我们现实一些,只求关键的几个点就好,整个区域上的位移根据这几个点进行插值。这就是有限元的思想。
可以看到,有限元最关键的步骤就是把求解无穷多个点降为有限个点,这个过程就叫做离散。

接下来,我们把有限元的离散与弱形式联系起来,来看一下这二者结合产生得到巨大效用。
首先对空间进行离散,因为我们举的是一维的例子,因此只需要将一个一维domain分成几个部分

用一个图像直观感受一下有限元(一维):
如果要求解精确的solution u(x),假设已经求出来了哦,下面就是有限元的其中一个解,注意是其中一个哦,这个强形式出来会有无穷个解的。
在这里插入图片描述
现在我把空间离散为3部分,再用弱形式进行求解,下面红色的线就是弱形式求出来的其中一个解。画这个粗糙的图举这个例子的原因是:有限元在离散点求出的点是准确的,而且可以简化解的形式。
在这里插入图片描述
下面正式开始求解:
首先求得弱形式,并将空间进行离散,得到下式:
在这里插入图片描述
可以看出,对空间进行离散之后,弱形式的方程就等价为在每个单元列弱形式方程,再进行累加。
其中,
在这里插入图片描述
这里的de是每个单元上节点的值,N是形函数;we是每个单元的上各节点的weight 值。至于为何要让u 和w 的形函数一样,这是因为要形成稀疏矩阵,方便计算机计算,这一部分我就不说感受了,主要说有限元。
将各参数代入得到
在这里插入图片描述
并简化为:
在这里插入图片描述
这就基本完成了有限元计算的构架,书中用一个简单的例子向我们展示了计算机对上式的计算方法:
在这里插入图片描述 在这里插入图片描述
因为w1比较特殊,它因为要essential boundary ,所以w1=0
所以说只能保证r2=r3=0
用矩阵来表示
在这里插入图片描述
变换为:
在这里插入图片描述

这个方程计算机就会解了,它有三个未知数 u2 u3 与 r1,这三个未知数可以由计算机计算得出。

以上为我学习有限元的第一篇心得,很简单,有限元的思想就是离散,离散使得计算机得以计算,弱形式使得我们求解得到差不多形式的solution即可。只是一维的,虽然已经学过多维,但我对其没有太过深刻的理解,也没有编程序进行过实践,在实践过后我再写心得叭。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值