声音分类及其实战(二)

本文探讨了声音文件的特征提取,重点介绍了MFCC特征在声音分类中的应用,并对比了使用语谱图作为特征的效果。接着,搭建了Dense和CNN模型进行声音分类,结果显示CNN模型在性能上优于Dense模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

特征提取

上节已经对声音文件有了一个基本的认识,本节主要介绍一段声音文件如何输入到模型以及之后的训练输出。已经有了数据,那么数据如何输入到模型呢?不可能直接输入数据的采样值吧,那显然不现实。此处首先介绍最通用的MFCC(梅尔倒谱)特征提取,至于其和梅尔频谱以及Fbank分数的区别之后再说。

import os
import librosa
import pandas as pd
import numpy as np
import progressbar as progressbar


def path_class(data
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码匀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值