- 博客(6)
- 收藏
- 关注
原创 《机器学习》(周志华)学习笔记(六):支持向量机
《机器学习》(周志华)学习笔记(六):支持向量机引言1.基本概念——间隔与支持向量2.对偶问题3.核函数4.软间隔与正则化5.支持向量回归6.核方法引言上一篇学习了神经网络这个机器学习的核心方法。首先对神经网络基本概念及结构进行介绍。神经网络由单个神经元连接构成简单的两层神经元就可以构成能够容易实现基本逻辑与、或、非得机构,但要解决非线性可分问题,还需要使用“多层前馈神经网络”。接着又介绍了针...
2018-09-22 13:53:46 734
原创 《机器学习》(周志华)学习笔记(五):神经网络
《机器学习》(周志华)学习笔记(五):神经网络引言1.基本结构——神经元模型2.感知机与多层网络2.1.信息增益2.2.信息增益率2.3.基尼系数3.剪枝处理4.连续与缺失值4.1.连续值处理4.2.缺失值处理5.多变量决策树引言上一篇学习了决策树这个常见的机器学习方法。首先对其基本概念进行理解,决策树包含根结点、内部结点和也结点,决策树的生成是一个递归过程,有三种情况会导致递归返回。接着讨论...
2018-09-19 21:16:41 888
原创 《机器学习》(周志华)学习笔记(四):决策树
《机器学习》(周志华)学习笔记(四):决策树1.基本概念与流程2.划分选择2.1.信息增益2.2.信息增益率2.3.基尼系数3.剪枝处理4.连续与缺失值4.1.连续值处理4.2.缺失值处理5.多变量决策树1.基本概念与流程基本概念:顾名思义,它是一以树的结构进行决策,通过一系列的判断或“子决策”得出最终的决策。一般,一颗决策树包含有一个根结点、若干个内部结点和若干个叶结点(对应决策结果)。基...
2018-09-18 23:08:18 569
原创 《机器学习》(周志华)学习笔记(三):线性模型
1.线性模型基本形式线性模型就是学习器试图学到一个通过属性的线性组合来预测的函数,数学表达如下 以向量表示可以写成 这里,w为列向量。2.线性回归线性回归即回归类任务学习线性模型的过程,其核心方法即均方误差最小化。均方根误差最小化求解线性方程参数的过程即为最小二乘法。推导过程这里不赘述。值得注意的是们对于多元线性回归,求解的矩阵往往不是满秩矩阵,折就意味着可以有多组解都...
2018-09-16 23:21:07 936
原创 《机器学习》(周志华)学习笔记(二):模型评估与选择
对于一个任务,往往有多种算法可供选择,甚至同一种算法,参数设置不同,对应的模型也不一样,我们需要对模型进行评估与选择。评估依据是模型的泛化误差。1.泛化误差概念理解 错误率(error rate)与精度(accuracy):根据模型分类错误的样本占中样本的比例,如m个样本中有a个分类错误,E =a/m。对应的,精度=1-a/m。 以此推广,我们将预测输出与实际真实输出的差异称之为误差(这...
2018-09-15 18:17:23 1759
原创 《机器学习》(周志华)学习笔记(一):绪论
1. 什么是机器学习 机器学习是一门致力于研究如何通过计算的手段,利用经验来改善系统自身的性能的学科。研究的主体内容是从数据中产生模型的算法,即“学习算法”。2. 机器学习的基本术语汇总 数据(data):机器学习的基础。 数据集(data set):数据的集合。 示例(instance)/样本(sample):每个数据记录,有时数据集也可字体作为一个样本。一般而言假定...
2018-09-14 23:48:49 361 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人