Leo的幸运数字——算法笔记

题目描述:

Leo最近在练习万以内的加减法,因为她在路上捡到了一本册子,上面写着:
给一个四位数a,把它的四位数字重新排序后,字典序最大减去字典序最小,得到数字b,称为一次幸运操作,如果对于任意数字和任意操作次数都能快速算出来,那么高考就能考数学满分。
例如,对于9899进行两次幸运操作,则9998-8999=999 9990-0999=8991,最后得到8991这个数字。
Leo数学还是不太好,所以请你帮她计算每一组数字a进行n次幸运操作后得到的数字。
(由于四位相同时,相减得0,所以数据保证a的四位不全相同)

输入:

第一行为数字t,表示有t组数据( t <=100000)
接下来的t行,每行两个整数,a和n (1000<a<9999 0<n<=100000)

输出:

对于每组数据,输出一行数字,表示该组数据最后得到的数字。(不需输出前导0)

输入样例:
2
9998 1
9998 2
输出样例:
999
8991
解题思路:

  题目解决起来很简单,但是这题是要优化算法以减少时间复杂度,不然是不会通过的。
  然而,这个题其实是 6174 猜想,即所有四位不全相同的四位数这么操作至多 7 次以后,必定得到 6174,而 6174 操作后得到本身,所以这题判断到重复即输出即可,不会超时。
  但是,这个判断重复也是有技巧的。可能也会走一些冤枉路,最终还是超时。比如说我最开始的想法:直接把 n >= 7 的数据输出 6174。 其他的再进行一步步的计算。发现有些数据不会到 7 次就输出了6174。所以时间复杂度不到要求。之后,我又改进这个思路:这次我在每次计算过程中把排好序的数组合6174进行逐一对比,若相同则跳出。但是结果还是超时。

这个超时的代码如下

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;

bool cmp (int a, int b)
{
    return a > b;
}


void fenli (int *a, int b)
{
    a[1] = b / 1000;
    a[2] = b % 1000 / 100;
    a[3] = b % 100 / 10;
    a[4] = b % 10;
}

int zuhe_max (int *k)
{
    int maxn = k[1] * 1000 + k[2] * 100 + k[3] * 10 + k[4];
    return maxn;
}

int  zuhe_min (int *k)
{
    int minn = k[4] * 1000 + k[3] * 100 + k[2] * 10 + k[1];
    return minn;
}

int main()
{
    int t;
    scanf ("%d", &t);
    while (t--)
    {
        int m, n;
        int a[5];
        int result, maxn, minn;
        cin >> m >> n;
        fenli (a, m);
        for (int i = 1; i <= n; i++)
        {
            sort (a + 1, a + 5, cmp); //从大到小
            if (a[1] == 7 && a[2] == 6 && a[3] == 4 && a[4] == 1)  //判断计算过程中是否出现了6174
            {
                result = 6174;
                break;
            }
            maxn = zuhe_max (a);

            minn = zuhe_min (a);

            result = maxn - minn;
            fenli (a, result);
        }
        printf ("%d\n", result);

    }
}

结果,判断结果还是超时,而且比以前那个 n >= 7输出还多一点。我是真的不知道怎么改了。于是就转换一种思路, 得到了与之差不多相同的算法,然后就通过了。

通过的代码参考

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;

int zuhe_min (char *k)
{
    int minn = (k[0] - '0') * 1000 + (k[1] - '0') * 100 + (k[2] - '0') * 10 + (k[3] - '0');
    return minn;
}

int  zuhe_max (char *k)
{
    int maxn = (k[3] - '0') * 1000 + (k[2] - '0') * 100 + (k[1] - '0') * 10 + (k[0] - '0');
    return maxn;
}


int main()
{
    int t;
    cin>>t;
    while (t--)
    {
        char a[5];
        int result, maxn, minn;
        scanf("%s", a);
        int n, index = 0;
        scanf("%d", &n);

        for (int i = 1; i <= n; i++)
        {
            sort(a, a + 4); //从小到大

            maxn = zuhe_max (a);    //求出最大组合值

            minn = zuhe_min (a);    //求出最小组合值

            result = maxn - minn;

            if (result == index)    // 这三个语句用来判断是否已经出现了6174这个值,
                break;              // 如果出现过,会保留在 index 中,则下一次运行到这里就会直接跳出循环;那么以后的就不需要执行了。
            index = result;         // 若是设阈值>=7时输出6174,还是会超时14%,是因为对于一些个别数据,有可能不需要计算七次就出现6174.
                                    //因此,在计算过程中应设置一旦出现6174就停止,又会减少时间。

            for (int j = 0; j < 4; j++) //分离各位
            {
                a[j] = result % 10;
                result = result / 10;
            }
        }
        printf("%d\n", index);

    }
}

可以看出,代码其实差不多,但前者就是超时。这个我也不知道再怎么优化了,欢迎大家帮我解答。
对于时间复杂度的优化还是不太熟练,以后得多多积累练习了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值