约数的一些定理——数论

算术基本定理:

  又称为正整数的唯一分解定理,即:每个大于1的自然数,要么本身就是质数,要么可以写为2个或以上的质数的积,而且这些质因子按大小排列之后,写法仅有一种方式。
  公式:A=(p1^k1) * (p2^k2) * (p3^k3) * …*(pn^kn) 其中pi均为素数。

约数和定理:

  对于已经分解的整数 A=(p1^k1) * (p2^k2) * (p3^k3) * …*(pn^kn)
  则由约数个数定理(由约数定义可知, p1 ^ k1的约数有:p1 ^ 0, p1 ^ 1, p1 ^ 2…p1^a1 ,共(a1+1)个 )可知,A的正约数有 (k1+1)(k2+1)(k3+1)…(ak+1) 个,证明如下
  n的约数是在p1 ^ k1、p2 ^ k2、…、pk^kk 每一个的约数中分别挑一个相乘得来,可知共有(k1+1)(k2+1)(k3+1)…(ak+1)种挑法,即约数的个数。
  所以 A 的 (k1+1)(k2+1)(k3+1)…(ak+1) 个正约数的和为:
  S = (1+p1+p1 ^ 2+p1 ^ 3+…p1^k1) * (1+p2+p22+p23+….p2^k2) * (1+p3+ p3 ^ 3+…+ p3^k3) * … * (1+pn+pn ^ 2+pn ^ 3+…pn^kn)

### 初等数论中的约数和倍数概念 在初等数论中,对于两个整数 \( a \) 和 \( b \),如果存在一个整数 \( q \),使得 \( a = bq \),则称 \( b \) 是 \( a \) 的**约数**(divisor)[^2]。此时也可以说 \( a \) 是 \( b \) 的**倍数**(multiple)。 #### 约数的定义与性质 - **整除关系**:当 \( b \mid a \) 表示 \( b \) 整除 \( a \),即 \( a \) 可以被 \( b \) 整除而不留余数。 - **正负性**:任何非零整数都有正负两种形式作为其自身的约数;例如,\( ±1, ±a \) 都是 \( a \) 的约数。 - **唯一性**:除了0以外,每个整数都至少有两个不同的约数——它自己及其相反数。 - **有限数量**:给定任一非零整数 \( n \),它的绝对值不超过 \( |n| \) 的所有可能因子构成了一个有限集合。 ```cpp // C++ code to find all divisors of an integer 'num' vector<int> findAllDivisors(int num){ vector<int> result; for (int i = 1; i * i <= abs(num); ++i){ if (num % i == 0){ result.push_back(i); if (i != num / i && num / i != -i) result.push_back(num / i); } } sort(result.begin(), result.end()); return result; } ``` #### 倍数的特点 - 对于任意一对不全为零的整数 \( m \) 和 \( k \),\( mk \) 总是 \( m \)'s 多少次方的一个倍数。 - 所有的整数都是0的倍数,因为按照定义,\( 0 = 0k \) 成立于所有的整数值 \( k \)。 - 若 \( d_1,d_2,\ldots ,d_k \) 是某整数 \( n \) 的全部不同正因数,则这些因数按从小到大的顺序排列后满足条件\[ d_i\cdot d_{(k-i+1)}=n \][^4] ### 关系与其他应用领域连接 理解约数和倍数之间的联系有助于深入探讨其他重要的数学主题,比如质数测试、最大公因数(GCD)算法以及最小公倍数(LCM)等问题。此外,在密码学等领域也有广泛应用,特别是在涉及模运算的情况下,如费马小定理所描述的内容所示[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值