算术基本定理:
又称为正整数的唯一分解定理,即:每个大于1的自然数,要么本身就是质数,要么可以写为2个或以上的质数的积,而且这些质因子按大小排列之后,写法仅有一种方式。
公式:A=(p1^k1) * (p2^k2) * (p3^k3) * …*(pn^kn) 其中pi均为素数。
约数和定理:
对于已经分解的整数 A=(p1^k1) * (p2^k2) * (p3^k3) * …*(pn^kn)
则由约数个数定理(由约数定义可知, p1 ^ k1的约数有:p1 ^ 0, p1 ^ 1, p1 ^ 2…p1^a1 ,共(a1+1)个 )可知,A的正约数有 (k1+1)(k2+1)(k3+1)…(ak+1) 个,证明如下:
n的约数是在p1 ^ k1、p2 ^ k2、…、pk^kk 每一个的约数中分别挑一个相乘得来,可知共有(k1+1)(k2+1)(k3+1)…(ak+1)种挑法,即约数的个数。
所以 A 的 (k1+1)(k2+1)(k3+1)…(ak+1) 个正约数的和为:
S = (1+p1+p1 ^ 2+p1 ^ 3+…p1^k1) * (1+p2+p22+p23+….p2^k2) * (1+p3+ p3 ^ 3+…+ p3^k3) * … * (1+pn+pn ^ 2+pn ^ 3+…pn^kn)