一个汽车工程师的Python学习之路

一个汽车工程师的Python学习之路

一:数据分析

数据分析是工程师的必备工具,尤其现在汽车上的控制器越来越多,采集到的数据也越来越多,如何从采集到的数据中分析问题,找到问题,解决问题尤其重要。
常用工具:

  • Numpy
  • Scipy
  • Pandas (高效处理INCA,MDA采集到的.mdf, .dat格式数据文件以及.csv文件)

二:图示工具

数据分析完后,配合统计、分析结果就需要使用图示工具,使用好的画图工具,可以更直观的显示出想要表达的结论。
常用工具:

  • Matplotlib
  • Seaborn
  • Pandas (自带画图包)

三:机器学习/深度学习

今年来AI很火,机器学习,深度学习(卷积神经网络CNN,对抗神经网络GAN)。现在AI是全行业、全民时代,后面也会更多的融入到我们生活、工业等方方面面。
常用工具:

  • Sicikit-learn (主要机器学习)
  • Google Tensorflow(深度学习)
  • 百度Paddlepaddle (深度学习 https://www.paddlepaddle.org.cn/)
    以上纯属个人观点,欢迎相关同行、前辈指正,也希望能在平台和相关同行、前辈进行相关技术交流。
    本人主要研究方向:传动系统道路谱、载荷谱、试验工况、试验方法、试验数据分析等领域。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值