贪心算法-活动安排问题

本文介绍了如何使用贪心算法解决活动安排问题,旨在安排尽可能多的活动在同一资源上进行。活动按照结束时间升序排列,通过比较活动结束时间和下一个活动开始时间,确保不相交,从而选择相容的活动。文章提供了算法分析和一个11个活动的示例,通过排序优化了算法效率,达到O(n)的时间复杂度。
摘要由CSDN通过智能技术生成

贪心算法-活动安排问题

活动安排问题是可以用贪心算法有效求解的很好的例子。
问题:有n个活动的集合A={1,2,…,n},其中每个活动都要求使用同一资源,如演讲会场等,而在同一时间内只有一个活动能使用这一资源。
求解:安排尽量多项活动在该场地进行,即求A的最大相容子集。
设待安排的11个活动的开始时间和结束时间按结束时间的升序排列如下:

i 1 2 3 4 5 6 7 8 9 10 11
s[i] 1 3 0 5 3 5 6 8 8 2 12
f[i] 4 5 6 7 8 9 10 11 12 13 14

将此表数据作为实现该算法的测试数据。
【算法分析】
分析:每个活动i都有一个要求使用该资源的起始时间si和一个结束时间fi,且si <fi 。如果选择了活动i,则它在半开时间区间[si, fi)内占用资源。若区间[si, fi)与区间[sj, fj)不相交,则称活动i与活动j是相容的。也就是说,当si≥fj或sj≥fi时,活动i与活动j相容。
例:给出待安排的11个活动的开始时间和结束时间,要求安排尽量多项活动使用会场。
首先,任意输入这11个活动。
然后对活动以其完成时间的非减序排列。(意义:使剩余的可安排时间段极大化,以便安排尽可能多的相容活动。)
将第一次活动结束时间f[1]与后面活动开始时间s[2]相比较,若s[2]<f[1]则继续比较,直到s[4]>f[1],选中此活动。再用活动4的结束时间f[4]与其后活动的开始时间比较……同理类推,直到比较完成为止,最后选出合条件的活动1,活动4,活动8和活动11,它们将依次被安排使用该场地。
具体代码:

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Scanner;
/*
测试数据我把它倒过来了,方便测试代码的排序和活动id的正确
11
12 14
2 13
8 12
8 11
6 10
5 9
3 8
5 7
0 6
3 5
1 4
 */
public 
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值