L1和L2损失函数(L1 and L2 loss function)及python实现

本文介绍了L1和L2损失函数在机器学习中的应用,包括它们的定义、区别以及在异常值处理和解稳定性方面的特点。L1损失函数具有较强的鲁棒性,而L2损失函数在回归问题中常见,如最小二乘法。通过numpy库,我们可以实现这两种损失函数的计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       在我们做机器学习的时候,经常要选择损失函数,常见的损失函数有两种:L1-norm loss function和L2-norm loss function。

       需要注意的是,损失函数(loss function)和正则化(regularity)是两种不同的东西,虽然思路类似,但是他们却有着完全不同的作用和目的。本文主要讲损失函数。

L1和L2正则化讲解


L1和L2 损失函数定义

L1损失函数

       使用L1损失函数也被叫做最小化绝对误差(Least Abosulote Error)。这个名称非常的形象。LAE就是最小化真实值 y i y_i yi和预测值 f ( x i ) f(x_i) f(xi)之间差值 D L 1 D_{L1} DL1绝对值的和。
D L 1 = ∑ i = 1 n ∣ y i − f ( x i ) ∣ D_{L1} = \sum_{i=1}^{n}|y_i-f(x_i)| DL1

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值