以下内容均为我个人的主观臆断
一、🧐基本信息
⚪标题: CAN LLM-GENERATED MISINFORMATION BE DETECTED?
⚪时间: 2023-7-21
⚪作者:
-
Canyu Chen
-
Kai Shu
🔵期刊: 2024 ICLR
🔵影响因子: 25.57
🙌引用数: 8
📙阅读记录:
🔹1、2024-02-21
🔹1、2024-02-22
🔹1、2024-02-25
二、📖这篇文章用什么方法解决了什么问题,实验结果如何:
作为一篇survey,本文核心一个问题展开多方面探究:
Will LLM-generated misinformation cause more harm than human-written misinformation?(LLM生成的虚假信息会比人写的虚假信息更有害吗?)
为了证明这个问题,作者从三个子问题入手:
1)How can LLMs be utilized to generate misinformation?
2)Can humans detect LLM-generated misinformation?
3)Can detectors detect LLM-generated misinformation?
作者总结本篇文章的贡献:
1、作者对LLM生成的虚假信息进行了分类;
2、对使用LLM生成虚假信息的方法进行了分类和验证;
3、证明了在相同语义的情况下LLM生成的的虚假信息比人写的虚假信息更难被检测出来(humans and detectors),从而证明了LLM生成的虚假信息更具有危害性;
4、对misinformation dectectors的未来进行了讨论。
三、之前的工作
[2024AAAI]OUTFOX:LLM-Generated Essay Detection Through In-Context Learning with Adversarially Generated Examples 生成对抗网络
Can AI-Generated Text be Reliably Detected?(这篇文章比较早,还没看)
https://arxiv.org/pdf/2303.11156.pdf
四、📚文章细节剖析:
4.1 TAXONOMY
作者从五个维度对LLM生成的虚假信息进行分类:
1)Types: fake news、rumours、conspiracy theories、clickbait、misleading claims、cherry-picking(不懂这是啥)
2)Domains:Healthcare、Science、 Politics、Finance、Law、Education、Social Media、Environment