[2024ICLR论文解读]CAN LLM-GENERATED MISINFORMATION BE DETECTED?

本文调查了LLM生成的虚假信息是否比人类创作的更具危害性,通过分类和实验发现LLM生成的虚假信息更难被识别。作者构建了LLM_FAKE数据集,并探讨了检测器和人类在识别上的差异,提出应对措施以减少LLM产生的错误信息影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以下内容均为我个人的主观臆断


一、🧐基本信息

标题: CAN LLM-GENERATED MISINFORMATION BE DETECTED?

时间: 2023-7-21

作者:

  • Canyu Chen

  • Kai Shu

🔵期刊: 2024 ICLR

🔵影响因子: 25.57

🙌引用数: 8


📙阅读记录:

🔹1、2024-02-21

🔹1、2024-02-22

🔹1、2024-02-25


二、📖这篇文章用什么方法解决了什么问题,实验结果如何:

作为一篇survey,本文核心一个问题展开多方面探究:

Will LLM-generated misinformation cause more harm than human-written misinformation?(LLM生成的虚假信息会比人写的虚假信息更有害吗?)

为了证明这个问题,作者从三个子问题入手:

1)How can LLMs be utilized to generate misinformation?

2)Can humans detect LLM-generated misinformation?

3)Can detectors detect LLM-generated misinformation?

作者总结本篇文章的贡献:

1、作者对LLM生成的虚假信息进行了分类;

2、对使用LLM生成虚假信息的方法进行了分类和验证;

3、证明了在相同语义的情况下LLM生成的的虚假信息比人写的虚假信息更难被检测出来(humans and detectors),从而证明了LLM生成的虚假信息更具有危害性;

4、对misinformation dectectors的未来进行了讨论。


三、之前的工作

[2024AAAI]OUTFOX:LLM-Generated Essay Detection Through In-Context Learning with Adversarially Generated Examples 生成对抗网络

Can AI-Generated Text be Reliably Detected?(这篇文章比较早,还没看)

https://arxiv.org/pdf/2303.11156.pdf


四、📚文章细节剖析:

4.1 TAXONOMY


作者从五个维度对LLM生成的虚假信息进行分类:

1)Types: fake news、rumours、conspiracy theories、clickbait、misleading claims、cherry-picking(不懂这是啥)

2)Domains:Healthcare、Science、 Politics、Finance、Law、Education、Social Media、Environment

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值