- 博客(24)
- 资源 (7)
- 收藏
- 关注
原创 ffmpeg解码webm视频为带透明通道的png
ffmpeg -vcodec libvpx-vp9 -i ejemplo.webm -pix_fmt rgba frame/%04d.png
2024-06-21 17:06:23 438
原创 ffmpeg命令行截取视频
ffmpeg -i /rebuild_vid/face384.webm -ss 00:01:00 -t 00:01:00 -c copy /rebuild_vid/face384_1501_3000.webmparam1:start timeparam2:duration time
2024-06-21 14:28:40 149
原创 时序动作分割中常用的评价指标(Acc,Segmental Edit Score, Segmental F1-Score)
MS-TCN、MS-TCN++和BCN都使用了这三个评价指标,有必要深入一下。1.frame-wise Accuracy正确帧数/总帧数"Acc: %.4f" % (100*float(correct)/total)2.Segmental edit distance编辑距离,又称为莱文斯坦距离,NLP中常用来衡量两个字符串之间的差异程度。Segmental edit distance考量了每两帧之间,从A帧替换到B帧所需的最小操作次数。即考量了两帧之间的差异性。Edit distance越大,两
2021-12-29 10:46:14 2496
原创 OD--YOLOv5代码学习
最新的YOLOv5增加了wandb功能,要先注册一个wandb的账号将申请的API配置到电脑上,即可实时看到损失、权重和偏执。1.配置超参YOLOv5的配置文件是.yaml格式以yolov5l.yaml为例# Parametersnc: 80 # number of classesdepth_multiple: 1.0 # model depth multiplewidth_multiple: 1.0 # layer channel multiplenc:代表分类类别的数量de
2021-09-10 14:48:47 826
原创 基于YOLOv5的视频流检测
在YOLOv5的基础之上做fine tune,用适合视频流大小尺寸的图像训练10个epoc1.用 cv2自带的VideoCapture读取摄像头信息import cv2cap=cv2.VideoCapture(0)if not cap.isOpened(): print("无法打开摄像头") exit()while True: ret,frame=cap.read() if not ret: print("捕获失败!") brea
2021-09-09 21:13:42 15269 7
原创 ObjectDetection--YOLOv1
YOLO官网:https://github.com/pjreddie/darknetgithub.comyolo(you look only once)是基于深度学习的一种回归方法网络结构:借鉴了GoogleNet的设计思想,用1×1的reduction layers和3×3conv layers取代inceptionYOLOv1YOLOv1将整张图像作为输入,直接在BoundingBox的基础之上做回归实现方法:1.将一张图像分成S×S个网格(grid cell),如果某个objec.
2021-09-09 21:01:20 245
原创 COCO数据集格式---XML转txt格式脚本
import xml.etree.ElementTree as ETimport pickleimport osfrom os import listdir,getcwdfrom os.path import joinimport globclasses=["crazing","inclusion",'patches',"pitter_surface","rolled-in_scale","scratches"]def convert(size,box): dw=1./size[0
2021-08-31 22:00:29 575
原创 CNN实现房价回归预测
可以做类似波士顿房价的预测,等等多个输入变量预测单个输出变量按列读取影响因素import numpy as npimport pandas as pdfile = r'C:\Users\xy\Desktop\temp.xlsx'data = pd.read_excel(file)data.columns = ['y', 'x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x9','x10']数据预处理我这里的数据没做归一化,可以使用scaler
2021-08-24 09:42:56 8671 10
原创 train_loss和test_loss不同情况下的训练方案
train loss 不断下降,test loss不断下降,说明网络仍在学习;train loss 不断下降,test loss趋于不变,说明网络过拟合;train loss 趋于不变,test loss不断下降,说明数据集100%有问题;train loss 趋于不变,test loss趋于不变,说明学习遇到瓶颈,需要减小学习率或批量数目;train loss 不断上升,test loss不断上升,说明网络结构设计不当,训练超参数设置不当,数据集经过清洗等问题。...
2021-07-12 09:42:57 444
原创 使用pre_trained模型进行VGG预测
第一步:导入VGG模型以及实例化from tensorflow.python.keras.applications.vgg16 import VGG16model=VGG16()第二步:读入图片,并把图片转换成数组格式from tensorflow.python.keras.applications.image import load_imgfrom tensorflow.python.keras.applications.image import img_to_arrayimg=load
2021-05-28 13:57:35 654
原创 TypeError: The added layer must be an instance of class Layer. Found: <tensorflow.python.keras.layer
import keras和from tensorflow.python.keras混用导致的解决方案:把import keras 中的keras从tensorflow.python中导入
2021-05-25 17:19:02 2909
原创 Python正则表达式
import rekey = r"javapythonhtmlvhdl\n"#字符串加r可去除掉转义字符p1=r"python"pattern=re.compile(p1)matcher=re.search(pattern,key)print(matcher.group(0))字符串前加r,可以去除掉转义字符加入元字符,代表匹配内部的任意一个字符import rekey = r"javaPythonhtmlvhdl\n"#字符串加r可去除掉转义字符p1=r"[pP]ython"
2021-05-19 21:33:02 162
原创 MySQL:Access denied for user ‘root‘@‘localhost‘
登录MySQL时报错解决办法:# /etc/init.d/mysqld stop # mysqld_safe --user=mysql --skip-grant-tables --skip-networking & # mysql -u root mysql mysql> UPDATE user SET Password=PASSWORD(’newpassword’) where USER=’root’; mysql> FLUSH PRIVILEGES; mysq
2021-05-19 14:53:28 198 2
原创 修改Jupyter Notebook的存储路径
1.打开Anaconda Prompt输入jupyter notebook --generate-config找到文件所在位置,打开config.py文件,把dir这一行前面的注释符去掉,引号里写入需要存储的文件夹的地址2.打开Jupyter笔记本所在位置,找到快捷图标进入快捷图标的属性,找到“目标”把目标后的"%USERPROFILE%/"删去,再重启Jupyter笔记本即可。...
2021-05-07 22:15:15 134
原创 Python--多线程
为什么要使用多线程进程是分配资源的最小单位,一旦创建一个进程就会分配一定的资源。线程是程序执行的最小单位,实际上进程只负责分配资源,而利用这些资源执行程序的是线程,也就是说进程是线程的容器,一个进程中最少有一个线程来负责执行程序。同时线程自己不拥有系统资源,只需要一点儿在运行中必不可少的资源,但它可与同属一个进程的其他线程共享进程所拥有的全部资源。线程的创建步骤1.导入线程模块import threading2.通过线程类创建线程对象线程对象=threading.Thread(target=任务
2021-04-25 21:37:58 118
原创 Python--多进程
多任务:指在同一时间执行多个任务多任务的最大好处:充分利用CPU资源,提高程序的执行效率多任务的表现形式:1.并发(任务数量大于CPU的核心数):在一段时间内交替去执行多个任务单核CPU执行多任务,操作系统轮流让各个任务交替执行2.并行(任务数量小于等于CPU的核心数):在一段时间内真正地同时执行多个任务多进程进程:进程是资源分配的最小单位,是操作系统进行资源分配和调度运行的基本单位(一个运行起来的任务至少有一个进程)进程的创建步骤:1.导入进程包import multiprocessi
2021-04-25 19:59:04 127
转载 梯度下降法的不同形式及优缺点
梯度下降,批量梯度下降,随机梯度下降梯度下降(batch gradent):W的每一次更新,使用所有的样本。计算得到的是一个标准梯度。更新一次的幅度较大,样本不大的情况,收敛速度可以接受;但是若样本太大,收敛会很慢。随机梯度下降(stochastic gradient decsent ):随机 — 每次使用训练数据中的一个样本更新,因而随机梯度下降是会带来一定的问题,因为计算得到的并不是准确的一个梯度,容易陷入到局部最优解中。一直不会收敛,只是在最小值附近波动。批量梯度下降(mini-batch):批
2021-04-19 20:57:08 1651
原创 关于contrib模块在tensorflow2.0下运行的解决方案
今天在学习代码时,因为tensorflow2.0对contrib模块进行分开维护,contrib在tensorflow2.0已经被移除,其功能要不就是集成在tensorflow中了,要不就是转到别的repo上了,compat.v1方法尝试之后发现并没什么用。解决方案:1.在对tensorflow版本没有要求的情况下,可以降低tensorflow的版本,进行重新安装。pip uninstall tensorflow2.对应要使用的contrib中的功能,找tensorflow2.0的API手册中相应方法
2021-02-19 22:33:20 9214
原创 This TensorFlow binary is optimized with oneAPI Deep Neural Network Library..
该警告提示tensorflow可以以更快的速度运行。消除此警告的方法:import osos.environ['TF_CPP_MIN_LOG_LEVEL']='2'加入这两行代码,也就是把tensorflow的警告等级降为2
2021-02-10 20:56:39 20134 5
原创 python中串口通信的步骤及实现
python内置的库函数确实很强大,serial库中包含了串口通信所用到的一些函数。本文用python实现了串口的一种简单通信。代码实现:import serial#导入串口通信库from time import sleepser = serial.Serial()def port_open_recv():#对串口的参数进行配置 ser.port='com3' ser.baudrate=9600 ser.bytesize=8 ser.stopbits=1
2020-11-18 18:59:09 34735 12
mfz-rxtx-2.2-20081207-win-x86.zip
2021-05-12
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人