一、源码
代码定义了一个 Rust trait Float,它为浮点数类型(如 f32、f64 等)提供了一系列通用的操作和常量,并实现了相关的功能。
use core::{fmt, mem, ops};
use super::int_traits::{CastFrom, Int, MinInt};
/// Trait for some basic operations on floats
// #[allow(dead_code)]
pub trait Float:
Copy
+ fmt::Debug
+ PartialEq
+ PartialOrd
+ ops::AddAssign
+ ops::MulAssign
+ ops::Add<Output = Self>
+ ops::Sub<Output = Self>
+ ops::Mul<Output = Self>
+ ops::Div<Output = Self>
+ ops::Rem<Output = Self>
+ ops::Neg<Output = Self>
+ 'static
{
/// A uint of the same width as the float
type Int: Int<OtherSign = Self::SignedInt, Unsigned = Self::Int>;
/// A int of the same width as the float
type SignedInt: Int
+ MinInt<OtherSign = Self::Int, Unsigned = Self::Int>
+ ops::Neg<Output = Self::SignedInt>;
const ZERO: Self;
const NEG_ZERO: Self;
const ONE: Self;
const NEG_ONE: Self;
const INFINITY: Self;
const NEG_INFINITY: Self;
const NAN: Self;
const NEG_NAN: Self;
const MAX: Self;
const MIN: Self;
const EPSILON: Self;
const PI: Self;
const NEG_PI: Self;
const FRAC_PI_2: Self;
const MIN_POSITIVE_NORMAL: Self;
/// The bitwidth of the float type
const BITS: u32;
/// The bitwidth of the significand
const SIG_BITS: u32;
/// The bitwidth of the exponent
const EXP_BITS: u32 = Self::BITS - Self::SIG_BITS - 1;
/// The saturated (maximum bitpattern) value of the exponent, i.e. the infinite
/// representation.
///
/// This shifted fully right, use `EXP_MASK` for the shifted value.
const EXP_SAT: u32 = (1 << Self::EXP_BITS) - 1;
/// The exponent bias value
const EXP_BIAS: u32 = Self::EXP_SAT >> 1;
/// Maximum unbiased exponent value.
const EXP_MAX: i32 = Self::EXP_BIAS as i32;
/// Minimum *NORMAL* unbiased exponent value.
const EXP_MIN: i32 = -(Self::EXP_MAX - 1);
/// Minimum subnormal exponent value.
const EXP_MIN_SUBNORM: i32 = Self::EXP_MIN - Self::SIG_BITS as i32;
/// A mask for the sign bit
const SIGN_MASK: Self::Int;
/// A mask for the significand
const SIG_MASK: Self::Int;
/// A mask for the exponent
const EXP_MASK: Self::Int;
/// The implicit bit of the float format
const IMPLICIT_BIT: Self::Int;
/// Returns `self` transmuted to `Self::Int`
fn to_bits(self) -> Self::Int;
/// Returns `self` transmuted to `Self::SignedInt`
#[allow(dead_code)]
fn to_bits_signed(self) -> Self::SignedInt {
self.to_bits().signed()
}
/// Check bitwise equality.
#[allow(dead_code)]
fn biteq(self, rhs: Self) -> bool {
self.to_bits() == rhs.to_bits()
}
/// Checks if two floats have the same bit representation. *Except* for NaNs! NaN can be
/// represented in multiple different ways.
///
/// This method returns `true` if two NaNs are compared. Use [`biteq`](Self::biteq) instead
/// if `NaN` should not be treated separately.
#[allow(dead_code)]
fn eq_repr(self, rhs: Self) -> bool {
if self.is_nan() && rhs.is_nan() { true } else { self.biteq(rhs) }
}
/// Returns true if the value is NaN.
fn is_nan(self) -> bool;
/// Returns true if the value is +inf or -inf.
fn is_infinite(self) -> bool;
/// Returns true if the sign is negative. Extracts the sign bit regardless of zero or NaN.
fn is_sign_negative(self) -> bool;
/// Returns true if the sign is positive. Extracts the sign bit regardless of zero or NaN.
fn is_sign_positive(self) -> bool {
!self.is_sign_negative()
}
/// Returns if `self` is subnormal.
#[allow(dead_code)]
fn is_subnormal(self) -> bool {
(self.to_bits() & Self::EXP_MASK) == Self::Int::ZERO
}
/// Returns the exponent, not adjusting for bias, not accounting for subnormals or zero.
fn ex(self) -> u32 {
u32::cast_from(self.to_bits() >> Self::SIG_BITS) & Self::EXP_SAT
}
/// Extract the exponent and adjust it for bias, not accounting for subnormals or zero.
fn exp_unbiased(self) -> i32 {
self.ex().signed() - (Self::EXP_BIAS as i32)
}
/// Returns the significand with no implicit bit (or the "fractional" part)
#[allow(dead_code)]
fn frac(self) -> Self::Int {
self.to_bits() & Self::SIG_MASK
}
/// Returns a `Self::Int` transmuted back to `Self`
fn from_bits(a: Self::Int) -> Self;
/// Constructs a `Self` from its parts. Inputs are treated as bits and shifted into position.
fn from_parts(negative: bool, exponent: u32, significand: Self::Int) -> Self {
let sign = if negative { Self::Int::ONE } else { Self::Int::ZERO };
Self::from_bits(
(sign << (Self::BITS - 1))
| (Self::Int::cast_from(exponent & Self::EXP_SAT) << Self::SIG_BITS)
| (significand & Self::SIG_MASK),
)
}
#[allow(dead_code)]
fn abs(self) -> Self;
/// Returns a number composed of the magnitude of self and the sign of sign.
fn copysign(self, other: Self) -> Self;
/// Fused multiply add, rounding once.
fn fma(self, y: Self, z: Self) -> Self;
/// Returns (normalized exponent, normalized significand)
#[allow(dead_code)]
fn normalize(significand: Self::Int) -> (i32, Self::Int);
/// Returns a number that represents the sign of self.
#[allow(dead_code)]
fn signum(self) -> Self {
if self.is_nan() { self } else { Self::ONE.copysign(self) }
}
}
/// Access the associated `Int` type from a float (helper to avoid ambiguous associated types).
pub type IntTy<F> = <F as Float>::Int;
macro_rules! float_impl {
(
$ty:ident,
$ity:ident,
$sity:ident,
$bits:expr,
$significand_bits:expr,
$from_bits:path,
$to_bits:path,
$fma_fn:ident,
$fma_intrinsic:ident
) => {
impl Float for $ty {
type Int = $ity;
type SignedInt = $sity;
const ZERO: Self = 0.0;
const NEG_ZERO: Self = -0.0;
const ONE: Self = 1.0;
const NEG_ONE: Self = -1.0;
const INFINITY: Self = Self::INFINITY;
const NEG_INFINITY: Self = Self::NEG_INFINITY;
const NAN: Self = Self::NAN;
// NAN isn't guaranteed to be positive but it usually is. We only use this for
// tests.
const NEG_NAN: Self = $from_bits($to_bits(Self::NAN) | Self::SIGN_MASK);
const MAX: Self = -Self::MIN;
// Sign bit set, saturated mantissa, saturated exponent with last bit zeroed
const MIN: Self = $from_bits(Self::Int::MAX & !(1 << Self::SIG_BITS));
const EPSILON: Self = <$ty>::EPSILON;
// Exponent is a 1 in the LSB
const MIN_POSITIVE_NORMAL: Self = $from_bits(1 << Self::SIG_BITS);
const PI: Self = core::$ty::consts::PI;
const NEG_PI: Self = -Self::PI;
const FRAC_PI_2: Self = core::$ty::consts::FRAC_PI_2;
const BITS: u32 = $bits;
const SIG_BITS: u32 = $significand_bits;
const SIGN_MASK: Self::Int = 1 << (Self::BITS - 1);
const SIG_MASK: Self::Int = (1 << Self::SIG_BITS) - 1;
const EXP_MASK: Self::Int = !(Self::SIGN_MASK | Self::SIG_MASK);
const IMPLICIT_BIT: Self::Int = 1 << Self::SIG_BITS;
fn to_bits(self) -> Self::Int {
self.to_bits()
}
fn is_nan(self) -> bool {
self.is_nan()
}
fn is_infinite(self) -> bool {
self.is_infinite()
}
fn is_sign_negative(self) -> bool {
self.is_sign_negative()
}
fn from_bits(a: Self::Int) -> Self {
Self::from_bits(a)
}
fn abs(self) -> Self {
cfg_if! {
// FIXME(msrv): `abs` is available in `core` starting with 1.85.
if #[cfg(intrinsics_enabled)] {
self.abs()
} else {
super::super::generic::fabs(self)
}
}
}
fn copysign(self, other: Self) -> Self {
cfg_if! {
// FIXME(msrv): `copysign` is available in `core` starting with 1.85.
if #[cfg(intrinsics_enabled)] {
self.copysign(other)
} else {
super::super::generic::copysign(self, other)
}
}
}
fn fma(self, y: Self, z: Self) -> Self {
cfg_if! {
// fma is not yet available in `core`
if #[cfg(intrinsics_enabled)] {
unsafe{ core::intrinsics::$fma_intrinsic(self, y, z) }
} else {
super::super::$fma_fn(self, y, z)
}
}
}
fn normalize(significand: Self::Int) -> (i32, Self::Int) {
let shift = significand.leading_zeros().wrapping_sub(Self::EXP_BITS);
(1i32.wrapping_sub(shift as i32), significand << shift as Self::Int)
}
}
};
}
#[cfg(f16_enabled)]
float_impl!(f16, u16, i16, 16, 10, f16::from_bits, f16::to_bits, fmaf16, fmaf16);
float_impl!(f32, u32, i32, 32, 23, f32_from_bits, f32_to_bits, fmaf, fmaf32);
float_impl!(f64, u64, i64, 64, 52, f64_from_bits, f64_to_bits, fma, fmaf64);
#[cfg(f128_enabled)]
float_impl!(f128, u128, i128, 128, 112, f128::from_bits, f128::to_bits, fmaf128, fmaf128);
/* FIXME(msrv): vendor some things that are not const stable at our MSRV */
/// `f32::from_bits`
pub const fn f32_from_bits(bits: u32) -> f32 {
// SAFETY: POD cast with no preconditions
unsafe { mem::transmute::<u32, f32>(bits) }
}
/// `f32::to_bits`
pub const fn f32_to_bits(x: f32) -> u32 {
// SAFETY: POD cast with no preconditions
unsafe { mem::transmute::<f32, u32>(x) }
}
/// `f64::from_bits`
pub const fn f64_from_bits(bits: u64) -> f64 {
// SAFETY: POD cast with no preconditions
unsafe { mem::transmute::<u64, f64>(bits) }
}
/// `f64::to_bits`
pub const fn f64_to_bits(x: f64) -> u64 {
// SAFETY: POD cast with no preconditions
unsafe { mem::transmute::<f64, u64>(x) }
}
/// Trait for floats twice the bit width of another integer.
pub trait DFloat: Float {
/// Float that is half the bit width of the floatthis trait is implemented for.
type H: HFloat<D = Self>;
/// Narrow the float type.
fn narrow(self) -> Self::H;
}
/// Trait for floats half the bit width of another float.
pub trait HFloat: Float {
/// Float that is double the bit width of the float this trait is implemented for.
type D: DFloat<H = Self>;
/// Widen the float type.
fn widen(self) -> Self::D;
}
macro_rules! impl_d_float {
($($X:ident $D:ident),*) => {
$(
impl DFloat for $D {
type H = $X;
fn narrow(self) -> Self::H {
self as $X
}
}
)*
};
}
macro_rules! impl_h_float {
($($H:ident $X:ident),*) => {
$(
impl HFloat for $H {
type D = $X;
fn widen(self) -> Self::D {
self as $X
}
}
)*
};
}
impl_d_float!(f32 f64);
#[cfg(f16_enabled)]
impl_d_float!(f16 f32);
#[cfg(f128_enabled)]
impl_d_float!(f64 f128);
impl_h_float!(f32 f64);
#[cfg(f16_enabled)]
impl_h_float!(f16 f32);
#[cfg(f128_enabled)]
impl_h_float!(f64 f128);
#[cfg(test)]
mod tests {
use super::*;
#[test]
#[cfg(f16_enabled)]
fn check_f16() {
// Constants
assert_eq!(f16::EXP_SAT, 0b11111);
assert_eq!(f16::EXP_BIAS, 15);
assert_eq!(f16::EXP_MAX, 15);
assert_eq!(f16::EXP_MIN, -14);
assert_eq!(f16::EXP_MIN_SUBNORM, -24);
// `exp_unbiased`
assert_eq!(f16::FRAC_PI_2.exp_unbiased(), 0);
assert_eq!((1.0f16 / 2.0).exp_unbiased(), -1);
assert_eq!(f16::MAX.exp_unbiased(), 15);
assert_eq!(f16::MIN.exp_unbiased(), 15);
assert_eq!(f16::MIN_POSITIVE.exp_unbiased(), -14);
// This is a convenience method and not ldexp, `exp_unbiased` does not return correct
// results for zero and subnormals.
assert_eq!(f16::ZERO.exp_unbiased(), -15);
assert_eq!(f16::from_bits(0x1).exp_unbiased(), -15);
assert_eq!(f16::MIN_POSITIVE, f16::MIN_POSITIVE_NORMAL);
// `from_parts`
assert_biteq!(f16::from_parts(true, f16::EXP_BIAS, 0), -1.0f16);
assert_biteq!(f16::from_parts(false, 0, 1), f16::from_bits(0x1));
}
#[test]
fn check_f32() {
// Constants
assert_eq!(f32::EXP_SAT, 0b11111111);
assert_eq!(f32::EXP_BIAS, 127);
assert_eq!(f32::EXP_MAX, 127);
assert_eq!(f32::EXP_MIN, -126);
assert_eq!(f32::EXP_MIN_SUBNORM, -149);
// `exp_unbiased`
assert_eq!(f32::FRAC_PI_2.exp_unbiased(), 0);
assert_eq!((1.0f32 / 2.0).exp_unbiased(), -1);
assert_eq!(f32::MAX.exp_unbiased(), 127);
assert_eq!(f32::MIN.exp_unbiased(), 127);
assert_eq!(f32::MIN_POSITIVE.exp_unbiased(), -126);
// This is a convenience method and not ldexp, `exp_unbiased` does not return correct
// results for zero and subnormals.
assert_eq!(f32::ZERO.exp_unbiased(), -127);
assert_eq!(f32::from_bits(0x1).exp_unbiased(), -127);
assert_eq!(f32::MIN_POSITIVE, f32::MIN_POSITIVE_NORMAL);
// `from_parts`
assert_biteq!(f32::from_parts(true, f32::EXP_BIAS, 0), -1.0f32);
assert_biteq!(f32::from_parts(false, 10 + f32::EXP_BIAS, 0), hf32!("0x1p10"));
assert_biteq!(f32::from_parts(false, 0, 1), f32::from_bits(0x1));
}
#[test]
fn check_f64() {
// Constants
assert_eq!(f64::EXP_SAT, 0b11111111111);
assert_eq!(f64::EXP_BIAS, 1023);
assert_eq!(f64::EXP_MAX, 1023);
assert_eq!(f64::EXP_MIN, -1022);
assert_eq!(f64::EXP_MIN_SUBNORM, -1074);
// `exp_unbiased`
assert_eq!(f64::FRAC_PI_2.exp_unbiased(), 0);
assert_eq!((1.0f64 / 2.0).exp_unbiased(), -1);
assert_eq!(f64::MAX.exp_unbiased(), 1023);
assert_eq!(f64::MIN.exp_unbiased(), 1023);
assert_eq!(f64::MIN_POSITIVE.exp_unbiased(), -1022);
// This is a convenience method and not ldexp, `exp_unbiased` does not return correct
// results for zero and subnormals.
assert_eq!(f64::ZERO.exp_unbiased(), -1023);
assert_eq!(f64::from_bits(0x1).exp_unbiased(), -1023);
assert_eq!(f64::MIN_POSITIVE, f64::MIN_POSITIVE_NORMAL);
// `from_parts`
assert_biteq!(f64::from_parts(true, f64::EXP_BIAS, 0), -1.0f64);
assert_biteq!(f64::from_parts(false, 10 + f64::EXP_BIAS, 0), hf64!("0x1p10"));
assert_biteq!(f64::from_parts(false, 0, 1), f64::from_bits(0x1));
}
#[test]
#[cfg(f128_enabled)]
fn check_f128() {
// Constants
assert_eq!(f128::EXP_SAT, 0b111111111111111);
assert_eq!(f128::EXP_BIAS, 16383);
assert_eq!(f128::EXP_MAX, 16383);
assert_eq!(f128::EXP_MIN, -16382);
assert_eq!(f128::EXP_MIN_SUBNORM, -16494);
// `exp_unbiased`
assert_eq!(f128::FRAC_PI_2.exp_unbiased(), 0);
assert_eq!((1.0f128 / 2.0).exp_unbiased(), -1);
assert_eq!(f128::MAX.exp_unbiased(), 16383);
assert_eq!(f128::MIN.exp_unbiased(), 16383);
assert_eq!(f128::MIN_POSITIVE.exp_unbiased(), -16382);
// This is a convenience method and not ldexp, `exp_unbiased` does not return correct
// results for zero and subnormals.
assert_eq!(f128::ZERO.exp_unbiased(), -16383);
assert_eq!(f128::from_bits(0x1).exp_unbiased(), -16383);
assert_eq!(f128::MIN_POSITIVE, f128::MIN_POSITIVE_NORMAL);
// `from_parts`
assert_biteq!(f128::from_parts(true, f128::EXP_BIAS, 0), -1.0f128);
assert_biteq!(f128::from_parts(false, 0, 1), f128::from_bits(0x1));
}
}
- 核心 Trait:Float
Float trait 定义了浮点数类型的基本操作和属性,要求实现该 trait 的类型必须满足一系列约束(如 Copy、Debug、算术运算等)。
关联类型
-
Int:与浮点数位数相同的无符号整数类型(如 f32 对应 u32)。
-
SignedInt:与浮点数位数相同的有符号整数类型(如 f32 对应 i32)。
常量定义
-
基本常量:ZERO、ONE、INFINITY、NAN 等。
-
数学常量:PI、FRAC_PI_2(π/2)。
-
位掩码:SIGN_MASK(符号位)、SIG_MASK(尾数位)、EXP_MASK(指数位)。
方法
-
位操作:to_bits(浮点数转二进制)、from_bits(二进制转浮点数)。
-
数学检查:is_nan、is_infinite、is_sign_negative。
-
数学运算:abs(绝对值)、copysign(复制符号)、fma(融合乘加)。
-
辅助功能:normalize(规范化浮点数)、exp_unbiased(无偏指数)。
- 宏 float_impl!
通过宏为具体浮点类型(如 f32、f64)实现 Float trait,避免重复代码。例如:
float_impl!(f32, u32, i32, 32, 23, f32_from_bits, f32_to_bits, fmaf, fmaf32);
-
参数说明:
-
$ty
:浮点类型(如 f32)。 -
$ity
:对应的无符号整数类型(如 u32)。 -
$bits
:总位数(如 f32 是 32 位)。 -
$significand_bits
:尾数位数(如 f32 是 23 位)。 -
$from_bits/$to_bits
:二进制转换函数。 -
$fma_fn/$fma_intrinsic
:融合乘加的实现。
-
- 二进制转换函数
-
f32_from_bits/f32_to_bits:通过 mem::transmute 实现浮点数与二进制的安全转换。
-
类似地,为 f64 也提供了对应函数。
- 扩展 Trait:DFloat 和 HFloat
-
DFloat:表示“双宽度浮点数”(如 f64 是 f32 的双宽度)。
- 方法 narrow():将双宽度浮点数转换为单宽度。
-
HFloat:表示“半宽度浮点数”(如 f16 是 f32 的半宽度)。
- 方法 widen():将半宽度浮点数扩展为双宽度。
通过宏 impl_d_float! 和 impl_h_float! 为类型实现这些 trait(如 f32 和 f64 互相转换)。
- 测试模块
对 f16、f32、f64、f128 的实现进行测试,验证:
-
常量是否正确(如 EXP_BIAS、SIG_BITS)。
-
方法行为是否符合预期(如 exp_unbiased、from_parts)。
二、关键设计思想
-
抽象通用操作:通过 Float trait 统一不同浮点类型的核心功能。
-
零成本抽象:利用宏和编译时计算避免运行时开销。
-
扩展性:支持 f16 和 f128 等非标准类型(通过特性开关控制)。
-
安全性:严格限制 unsafe 的使用(仅用于必要的二进制转换)。
三、使用示例
// 假设已实现 Float for f32
let x = 3.0f32;
println!("Bits of PI: {:032b}", x.to_bits());
println!("Unbiased exponent: {}", x.exp_unbiased());
三、总结
这段代码是 Rust 数学库的核心部分,通过 trait 和宏实现了浮点数的通用操作,支持从 f16 到 f128 的多种类型,同时确保高性能和类型安全。