一、源码
这段代码实现了类型级别的乘法运算,使用Rust的类型系统来表示和执行整数乘法。这是典型的类型级编程(type-level programming)示例,常用于在编译期进行数学运算。
use core::ops::{Mul, Neg};
use super::basic::{Z0, P1, N1, B0, B1, Integer, NonZero};
use super::add::Add;
// ========== Basic Type Multiplication ==========
// ========== 基本类型乘法 ==========
// ========== 0 * All ==========
// ========== 零乘以任何数 ==========
impl<I: Integer> Mul<I> for Z0 {
type Output = Self;
#[inline(always)]
fn mul(self, _rhs: I) -> Self::Output {
self // 0 * any = 0
}
}
// ========== 1 * All ==========
// ========== 一乘以任何数 ==========
impl<I: Integer> Mul<I> for P1 {
type Output = I;
#[inline(always)]
fn mul(self, rhs: I) -> Self::Output {
rhs // 1 * x = x
}
}
// ========== -1 * All ==========
// ========== 负一乘以任何数 ==========
impl<I: Integer + Neg> Mul<I> for N1 {
type Output = I::Output;
#[inline(always)]
fn mul(self, rhs: I) -> Self::Output {
-rhs // -1 * x = -x
}
}
// ========== B0 * All ==========
// ========== 以0结尾的二进制数乘法 ==========
// B0 * Z0 = 0
// 以0结尾的数乘以零
impl<H: NonZero> Mul<Z0> for B0<H> {
type Output = Z0;
#[inline(always)]
fn mul(self, _rhs: Z0) -> Self::Output {
Z0 // x * 0 = 0
}
}
// B0<NonZero> * NonZero = B0<NonZero * I>
// 以0结尾的数乘以非零数
//
// Explanation:
// B0<P> * I = (2*P)*I = 2*(P*I) = B0<P * I>
// B0<N> * I = -B0<-N> * I = -B0<(-N)*I> = B0<N * I>
// Therefore, B0<NonZero> * I = B0<NonZero * I>
//
// 说明:
// B0<P> * I = (2*P)*I = 2*(P*I) = B0<P * I>
// B0<N> * I = -B0<-N> * I = -B0<(-N)*I> = B0<N * I>
// 因此,B0<NonZero> * I = B0<NonZero * I>
impl<H: NonZero + Mul<I>, I: NonZero> Mul<I> for B0<H> {
type Output = B0<H::Output>;
#[inline(always)]
fn mul(self, _rhs: I) -> Self::Output {
B0::new() // 构造新的B0类型
}
}
// ========== B1 * All ==========
// ========== 以1结尾的二进制数乘法 ==========
// B1 * Z0 = 0
// 以1结尾的数乘以零
impl<H: NonZero> Mul<Z0> for B1<H> {
type Output = Z0;
#[inline(always)]
fn mul(self, _rhs: Z0) -> Self::Output {
Z0 // x * 0 = 0
}
}
// B1<NonZero> * NonZero = I + B0<NonZero * I>
// 以1结尾的数乘以非零数
//
// Explanation:
// B1<P> * I = (1 + B0<P>) * I = I + B0<P * I>
// B1<N> * I = -B1<!N> * I = -I * ((2*!N)+1)
// = -I * ((-2*(N+1))+1) = -I * ((-2*N)-1)
// = I * ((2*N)+1) = I + B0<N*I>
// Therefore, B1<NonZero> * I = I + B0<NonZero * I>
//
// 说明:
// B1<P> * I = (1 + B0<P>) * I = I + B0<P * I>
// B1<N> * I = -B1<!N> * I = -I * ((2*!N)+1)
// = -I * ((-2*(N+1))+1) = -I * ((-2*N)-1)
// = I * ((2*N)+1) = I + B0<N*I>
// 因此,B1<NonZero> * I = I + B0<NonZero * I>
impl<H: NonZero + Mul<I>, I: NonZero + Add<B0<<H as Mul<I>>::Output>>> Mul<I> for B1<H> {
type Output = I::Output;
#[inline(always)]
fn mul(self, i: I) -> Self::Output {
i + B0::new() // I + B0<H*I>
}
}
/// Type alias for multiplication: `Prod<A, B> = <A as Mul<B>>::Output`
/// 乘法运算的类型别名:`Prod<A, B> = <A as Mul<B>>::Output`
pub type Prod<A, B> = <A as Mul<B>>::Output;
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_basic_multiplication() {
// Test Z0 (0 * anything = 0)
// 测试零的乘法
let _: Z0 = Z0 * Z0;
let _: Z0 = Z0 * P1;
let _: Z0 = Z0 * N1;
// Test P1 (1 * anything = anything)
// 测试正一的乘法
let _: Z0 = P1 * Z0;
let _: P1 = P1 * P1;
let _: N1 = P1 * N1;
// Test N1 (-1 * anything = -anything)
// 测试负一的乘法
let _: Z0 = N1 * Z0;
let _: N1 = N1 * P1;
let _: P1 = N1 * N1;
}
#[test]
fn test_b0_multiplication() {
// B0<P1> represents binary 10 (decimal 2)
// B0<P1> 表示二进制10(十进制2)
let b0_p1: B0<P1> = B0::new();
// 2 * 0 = 0
let _: Z0 = b0_p1 * Z0;
// 2 * 1 = 2 (B0<P1>)
let _: B0<P1> = b0_p1 * P1;
// 2 * (-1) = -2 (B0<N1>)
let _: B0<N1> = b0_p1 * N1;
}
#[test]
fn test_b1_multiplication() {
// B1<P1> represents binary 11 (decimal 3)
// B1<P1> 表示二进制11(十进制3)
let b1_p1: B1<P1> = B1::new();
// 3 * 0 = 0
let _: Z0 = b1_p1 * Z0;
// 3 * 1 = 3 (B1<P1>)
// Note: This requires addition to be properly implemented
// 注意:这需要加法正确实现
// let _: B1<P1> = b1_p1 * P1;
// 3 * (-1) = -3 (B1<N1>)
// let _: B1<N1> = b1_p1 * N1;
}
// Helper function to create values
// 辅助函数创建值
fn _create_values() {
let _z0 = Z0;
let _p1 = P1;
let _n1 = N1;
let _b0_p1: B0<P1> = B0::new();
let _b1_p1: B1<P1> = B1::new();
}
}
二、基本概念
- 类型表示数字:
-
Z0 表示数字0
-
P1 表示正1
-
N1 表示负1
-
B0 表示以0结尾的二进制数(相当于2*H)
-
B1 表示以1结尾的二进制数(相当于2*H + 1)
- 核心trait:
-
Integer - 表示整数类型
-
NonZero - 表示非零整数类型
-
Mul - Rust的标准乘法trait
三、乘法实现
- 零的乘法 (Z0)
impl<I: Integer> Mul<I> for Z0 {
type Output = Self;
fn mul(self, _rhs: I) -> Self::Output {
self // 0 * any = 0
}
}
任何数乘以零都等于零,返回Z0类型。
- 一的乘法 (P1)
impl<I: Integer> Mul<I> for P1 {
type Output = I;
fn mul(self, rhs: I) -> Self::Output {
rhs // 1 * x = x
}
}
一乘以任何数等于该数本身,返回输入类型。
- 负一的乘法 (N1)
impl<I: Integer + Neg> Mul<I> for N1 {
type Output = I::Output;
fn mul(self, rhs: I) -> Self::Output {
-rhs // -1 * x = -x
}
}
负一乘以任何数等于该数的负数,要求输入类型实现了Neg trait。
- 以0结尾的二进制数乘法 (B0)
impl<H: NonZero> Mul<Z0> for B0<H> {
type Output = Z0;
fn mul(self, _rhs: Z0) -> Self::Output {
Z0 // x * 0 = 0
}
}
impl<H: NonZero + Mul<I>, I: NonZero> Mul<I> for B0<H> {
type Output = B0<H::Output>;
fn mul(self, _rhs: I) -> Self::Output {
B0::new() // B0<H * I>
}
}
-
乘以零返回零
-
乘以非零数:B0 * I = B0<HI>(因为B0表示2H,所以2H * I = 2(H*I))
- 以1结尾的二进制数乘法 (B1)
impl<H: NonZero> Mul<Z0> for B1<H> {
type Output = Z0;
fn mul(self, _rhs: Z0) -> Self::Output {
Z0 // x * 0 = 0
}
}
impl<H: NonZero + Mul<I>, I: NonZero + Add<B0<<H as Mul<I>>::Output>>> Mul<I> for B1<H> {
type Output = I::Output;
fn mul(self, i: I) -> Self::Output {
i + B0::new() // I + B0<H*I>
}
}
-
乘以零返回零
-
乘以非零数:B1 * I = I + B0<HI>(因为B1表示2H + 1,所以(2H + 1) * I = I + 2H*I)
四、类型别名
pub type Prod<A, B> = <A as Mul<B>>::Output;
提供方便的别名Prod<A, B>来表示A * B的类型。
五、测试用例
测试代码验证了各种乘法场景:
-
基本乘法(零、正一、负一)
-
B0类型的乘法
-
B1类型的乘法
这种类型级编程技术常用于需要编译期计算的场景,如模板元编程、维度检查等,可以在编译期捕获错误而不引入运行时开销。